B.Sc. PHYSICS Honours Syllabus Under CHOICE BASED CREDIT SYSTEM

1st & 2nd Semester: 2015-16 onwards 3rd & 4th Semester: 2016-17 onwards 5th & 6th Semester: 2017-18 onwards

Post Graduate Department of Physics Khallikote University

CORE COURSE (HONOURS IN PHYSICS)

Semester I

PHYSICS-C I: MATHEMATICAL PHYSICS-I

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

UNIT-I

Vector Calculus:

Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields. (6 Lectures)

Calculus:

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. (4 Lectures)

UNIT-II

Dirac Delta function and its properties:

Definition of Dirac delta function. Properties of Dirac delta function. (2 Lectures)

Vector Differentiation: Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities, Numericals (8 Lectures)

UNIT-III

Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications. (12 Lectures)

UNIT-IV

Orthogonal Curvilinear Coordinates:

Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. Comparison of velocity and acceleration in cylindrical and spherical coordinate system. (8 Lectures)

- [01] Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013,7th Edn., Elsevier.
- [02] An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning.
- [03]Differential Equations, George F. Simmons, 2007, McGraw Hill.
- [04] Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- [05]Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book
- [06] Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning

[07] Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.

[08]Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press

[09]Mathematical Physics and Special Relativity, M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) 2nd Edition 2009

- [10]Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- [11] Mathematical Physics C. Harper, (Prentice Hall India) 2006.
- [12]Mathematical Physics-Goswami (Cengage Learning) 2014
- [13]Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006

PHYSICS LAB- C I LAB: 20 Classes (2 hr duration)

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- The course will consist of lectures (both theory and practical) in the Lab
- Evaluation done not on the programming but on the basis of formulating the problem
- Aim at teaching students to construct the computational problem to be solved
- Students can use any one operating system Linux or Microsoft Windows

Topics Introduction and Overview	Description with Applications Computer architecture and organization, memory and Input/output devices.
Basics of scientific computing	Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow &overflow emphasize the importance of making equations in terms of dimensionless variables, Iterative methods.
Errors and error Analysis	Truncation and round off errors, Absolute and relative errors, Floating point computations.
Review of C & C++ Programming fundamentals	Introduction to Programming, constants, variables and data types, operators and Expressions, I/O statements, scanf and printf, c in and c out, Manipulators for data formatting, Control statements (decision making and looping statements) (Ifstatement. Ifelse Statement. Nested if Structure. Elseif Statement. Ternary Operator.
	Goto Statement. Switch Statement. Unconditional and

Conditional Looping. While Loop. Do-While Loop.
FOR Loop. Break and Continue Statements. Nested Loops),
Arrays (1D & 2D) and strings, user defined functions,
Structures and Unions, Idea of classes and objects.
Sum & average of a list of numbers, largest of a given
list of numbers and its location in the list, sorting of
numbers in ascending descending order, Binary search
Area of circle, area of square, volume of sphere, value

of π .

Programs:

Random number generation

Any other experiments as and when they are set up.

Referred Books:

[01] Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.

[02]Schaum's Outline of Programming with C++. J. Hubbard, 2000, McGraw---Hill Pub.

[03]Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal, 3rd Edn. 2007, Cambridge University Press.

[04] A first course in Numerical Methods, U.M. Ascher & C. Greif, 2012, PHI Learning.

[05] Elementary Numerical Analysis, K.E. Atkinson, 3 rd Edn., 2007, Wiley India Edition.

[06] Numerical Methods for Scientists & Engineers, R.W. Ḥamming, 1973, Courier Dover Pub.

[07]An Introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press.

PHYSICS-C II: MECHANICS (Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Rotational Dynamics: Motion under central force, Acceleration in Polar coordinates, Centre of Mass and Laboratory frames. Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Bar and Katers Pendulum – Corrections.

(10 Lectures)

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications.

(4 Lectures)

UNIT-II

Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire.(**3 Lectures**) **Fluid Motion:** Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.(**2 Lectures**)

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere.

(3 Lectures)

Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). Physiological effects on astronauts. (5 Lectures)

UNIT-III

Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. (**5 Lectures**)

UNIT-IV

Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Massenergy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. (8 Lectures)

Reference Books:

[01] An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.

[02] Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.

[03] Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.

[04] Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.

[05] Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education

[06]Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.

[07] University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

Additional Books for Reference

[01] Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000

[02]University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley

[03] Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A. Serway, 2010, Cengage Learning

[04] Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

[05]Mechanics - J. C. Slater and N. H. Frank (McGraw-Hill)

-__-

PHYSICS LAB-C II LAB

20 Classes (2hr duration)

- 1. To study the random error in observations.
- 2. To determine the height of a building using a Sextant.
- 3. To study the Motion of Spring and calculate (a) Spring constant, (b) **g** and (c) Modulus of rigidity.
- 4. To determine the Moment of Inertia of a Flywheel.
- 5. To determine **g** and velocity for a freely falling body using Digital Timing Technique
- 6. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 7. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 8. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 9. To determine the elastic Constants of a wire by Searle's method.
- 10. To determine the value of g using Bar Pendulum.
- 11. To determine the value of g using Kater's Pendulum
- 12. To determine the Young's Modulus by single cantilever/Double Cantilever.
- 13. To study the laws of transverse vibration of strings by Sonometer.
- 14. To calibrate the set of weights.

Reference Books

[01] Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House

[02]Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

[03]A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal

Semester II

PHYSICS-C III: ELECTRICITY AND MAGNETISM (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Electric Field and Electric Potential

Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. (3 Lectures)

Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. (3 Lectures)

Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. (4 Lectures)

UNIT-II

Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector **D**. Relations between **E**, **P** and **D**. Gauss' Law in dielectrics. (4 Lectures)

Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B, H, M. Ferromagnetism. B-H curve and hysteresis. (5 Lectures)

UNIT-III

Magnetic Field: Magnetic force between current elements and definition of Magnetic Field B. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Ballistic Galvanometer: Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. (12 Lectures)

UNIT-IV

Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. (3 Lectures)

Electrical Circuits: AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit. (6 Lectures)

Reference Books:

[01] Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw

[02] Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education

[03]Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.

[04] Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education

[05] Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.

[06] Electricity and Magnetism, J.H.Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. Press.

PHYSICS LAB-C III LAB 20 Classes (2hr duration)

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the characteristics of a series RC Circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- 7. To verify the Thevenin and Norton theorems.

- 8. To verify the Superposition, and Maximum power transfer theorems.
- 9. To determine self inductance of a coil by Anderson's bridge.
- 10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency,
 - (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- 11. To study the response curve of a parallel LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q.
- 12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
- 13. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 14. To determine self-inductance of a coil by Rayleigh's method.
- 15. To determine the mutual inductance of two coils by Absolute method.
- 16. To determine the low resistance of a wire using Potentiometer.
- 17. To determine the low resistance of a wire using Carey-foster's bridge.
- 18. To compare capacitances by de Sauty's Bridge.
- 19. To determine the resistance of Ballistic Galvanometer by Half Deflection method.
- 20. To determine the figure of merit of a Ballistic Galvanometer

Reference Books

[01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House

[02] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

[03] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

[04] A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Publications.

PHYSICS-C IV: WAVES AND OPTICS

(Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Geometrical optics: Fermat's principle, reflection and refraction at plane interface, Matrix formulation of geometrical Optics. Idea of dispersion. Application to thick lense, Ramsden and Huygens eyepiece. (4 Lectures)

Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. (**4 Lectures**)

UNIT-II

Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. Superposition of N harmonic waves.

(2 Lectures)

Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. (3 Lectures)

Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment.(**3 Lectures**)

UNIT-III

Interference: Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index. (**5 Lectures**)

Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5)

Visibility of Fringes. Fabry-Perot interferometer. (5 Lectures)

UNIT-IV

Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating. (7 Lectures)

Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.

(7 Lectures)

Reference Books

- [01] Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- [02] Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- [03] Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- [04] Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- [05] The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- [06] The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- [07] Optics Brijlal & Subramaniam- (S. Chand Publication) 2014.
- [08] Geometrical and Physical Optics R.S. Longhurst, Orient Blackswan, 01-Jan-1986
- [09] Vibrations and Waves -- A. P. French, (CBS) Indian print 2003
- [10] Optics, E. Hecht (Pearson India)

PHYSICS LAB- C IV LAB

20 Classes (2hr duration)

- 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 T law.
- 2. To investigate the motion of coupled oscillators.
- 3. To study Lissajous Figures.
- 4. Familiarization with: Schuster's focusing; determination of angle of prism.
- 5. To determine refractive index of the Material of a prism using sodium source.
- 6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
- 7. To determine the wavelength of sodium source using Michelson's interferometer.
- 8. To determine wavelength of sodium light using Fresnel Biprism.
- 9. To determine wavelength of sodium light using Newton's Rings.
- 10.To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
- 11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 12. To determine dispersive power and resolving power of a plane diffraction grating.
- 13. To determine dispersive power and Cauchys constant using Hg-Source.

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- [02] A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- [03] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition,reprinted 1985, Heinemann Educational Publishers
- [04] A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani

Semester III

PHYSICS-C V: MATHEMATICAL PHYSICS-II

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity.

(10 Lectures)

UNIT-II

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. (4 Lectures)

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. (**4 Lectures**)

UNIT-II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance, Frobenius method and its applications to differential equations: Legendre & Hermite Differential Equations. Properties of Legendre & Hermite Polynomials, Bassel: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Associated Legendre polynomials and spherical harmonics. (12 Lectures)

UNIT-IV

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Solution of variable heat flow equation, Wave equation and its solution for vibrational modes of a stretched string. (10 Lectures)

- [01] Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- [02] Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- [03] Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- [04] Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- [05] Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.
- [06] Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books
- [07] Mathematical Physics and Special Relativity --M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) 2nd Edition 2009
- [08] Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics), 6th Edition 2011.
- [09] Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- [10] Mathematical Physics-Goswami (CENGAGE Learning) 2014
- [11] Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006

- [12] Mathematics for Physicists, P. Dennery and A. Krzywicki Dover)
- [13] Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.

PHYSICS LAB-C V LAB 20 Classes (2hr duration)

The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the problem.

Topics

Introduction to Numerical computation software Scilab

Description with Applications

Introduction to Scilab, Advantages and disadvantages, Scilab environment, Command window, Figure window, Edit window, Variables and arrays, Initialising variables in Scilab, Multidimensionalarrays, Subarray, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3D plotting (2), Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization (2) User defined functions, Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Character Complex and data, string function.

Multidimensional arrays (2) an introduction to Scilab file processing, file opening and closing, Binary I/o functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program (2).

Curve fitting, Least square fit, Goodness of fit, standard deviation Ohms law to calculate R, Hooke's law to calculate spring constant

Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values Problems Solution of mesh equations of electric circuits (3 meshes) Solution of coupled spring mass systems (3 masses)

Solution of ODE

First order Differential equation Euler, modified Euler and Runge-Kuttasecond order methods

Second order differential equation.

Fixed difference method

First order differential equation

- Radioactive decay
- Current in RC, LC circuits with DC source
- order Newton's law of cooling
 - Classical equations of motion

Second order Differential Equation

- Harmonic oscillator (no friction)
- Damped Harmonic oscillator
- Over damped
- Critical damped

- Oscillatory
- Forced Harmonic oscillator
- Transient and
- Steady state solution
- Apply above to LCR circuits also

Reference Books:

- [01] Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J.20 Bence, 3rd ed., 2006, Cambridge University Press
- [02] Complex Variables, A.S. Fokas & M.J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- [03] First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett
- [04] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A.V. Wouwer, P. Saucez, C.V. Fernández. 2014 Springer
- [05] Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
- [06] Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- [07] Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C VI: THERMAL PHYSICS

(Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration) (*Include related problems for each topic*)

UNIT-I

Introduction to Thermodynamics

Recapitulation of Zeroth and First law of thermodynamics.

Second Law of Thermodynamics: Reversible and Irreversible process with examples.

Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics. (7 Lectures)

Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. (7 Lectures)

UNIT-II

Thermodynamic Potentials: Extensive and Intensive Thermodynamic Variables. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations (6 Lectures)

Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) Tds Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. (6 Lectures)

UNIT-III

Kinetic Theory of Gases

Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. (4 Lectures)

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. (4 Lectures)

UNIT-IV

Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO₂ Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. p-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. (6 Lectures)

Reference Books:

- [01] Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- [02] A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
- [03] Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- [04] Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- [05] Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.
- [06] Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press.
- [07] Heat and Thermal Physics-Brijlal & Subramaiam (S.Chand Publication) 2014
- [08] Thermal Physics-- C. Kittel and H. Kroemer (McMillan Education India) 2010

PHYSICS LAB- C VI LAB

20 Classes (2hr duration)

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- 4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
- 5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).
- 6. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.
- 7. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.
- 8. To determine J by Caloriemeter.

- [01] Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- [02] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- [03] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [04] A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

PHYSICS-C VII: DIGITAL SYSTEMS AND

APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Integrated Circuits (Qualitative treatment only): Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs. (3 Lectures)

Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. (5 Lectures)

Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. (3 Lectures)

UNIT-II

Digital Circuits: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers. (**5 Lectures**)

Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map.

(5 Lectures)

UNIT-III

Introduction to CRO: Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. (3 Lectures)

Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.

(4 Lectures)

UNIT-IV

Introduction to Computer Organization: Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map. (6 Lectures)

Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). (2 Lectures)

Counters(4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. (4 Lectures)

- [01] Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw
- [02] Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- [03] Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- [04] Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning
- [05] Logic circuit design, Shimon P. Vingron, 2012, Springer.
- [06] Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- [07] Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall.
- [08] Concept of Electronics: D.C.Tayal (Himalay Publication) 2011
- [09] Electronics-V. K. Meheta (S. Chand Publication)2013

PHYSICS PRACTICAL-C VII LAB

20 Classes (2hr duration)

- 1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
- 2. To test a Diode and Transistor using a Multimeter.
- 3. To design a switch (NOT gate) using a transistor.
- 4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 5. To design a combinational logic system for a specified Truth Table.
- 6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
- 7. To minimize a given logic circuit.
- 8. Half Adder, Full Adder and 4-bit binary Adder.
- 9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
- 10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
- 11. To build JK Master-slave flip-flop using Flip-Flop ICs
- 12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- 13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
- 14. To design an astable multivibrator of given specifications using 555 Timer.
- 15. To design a monostable multivibrator of given specifications using 555 Timer.

Reference Books:

- [01] Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.
- [02] Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- [03] Microprocessor Architecture Programming and applications with 8085,
- R.S. Goankar, 2002, Prentice Hall.
- [04] Microprocessor 8085:Architecture, Programming and interfacing, A. Wadhwa, 2010, PHI Learning.

Semester IV

PHYSICS-VIII: MATHEMATICAL PHYSICS-III

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Complex Analysis: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Simple application in solving Definite Integrals. (14 Lectures)

UNIT-II

Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). (8 Lectures)

UNIT-III

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. (6 Lectures)

UNIT-IV

Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations. (6 Lectures)

Application of Laplace Transforms to Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits. **(6 Lectures)**

Reference Books:

- [01] Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press
- [02] Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- [03] Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.
- [04] Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
- [05] Complex Variables, A. S. Fokas & M. J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- [06] Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill
- [07] First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett.
- [08] Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- [09] Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- [10] Mathematical Physics-Goswami (Cengage Learning) 2014
- [11] Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006
- [12] Introduction to the theory of functions of a complex variable- E.T.Copson (Oxford) Univ. Press, 1970

PHYSICS PRACTICAL-C VIII LAB

20 Classes (2hr duration)

Scilab based simulations experiments based on Mathematical Physics problems like

1. Solve differential equations:

$$dy/dx = e^{-x}$$
 with $y = 0$ for $x = 0$
 $dy/dx + e^{-x}y = x^2$
 $d^2y/dt^2 + 2 dy/dt = -y$
 $d^2y/dt^2 + e^{-t}dy/dt = -y$
2. Dirac Delta Function:

Evaluate _____ dx for σ =1,0.1, 0.01 and show it tends to 5

3. Fourier Series:

Program to sum

Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions:

Plot $P_n(x)$, $J_{\nu}(x)$

Show recursion relation

- 5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).
- 6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.
- 7. Evaluation of trigonometric functions e.g. $\sin \theta$, Given Bessel's function at N points find its value at an intermediate point. Complex analysis: Integrate $1/(x^2+2)$ numerically and check with computer integration.
- 8. Integral transform: FFT of e^{-x2}

Reference Books:

- [01] Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and
- S. J. Bence, 3rd ed., 2006, Cambridge University Press
- [02] Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
- [03] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB:
- [04] Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez,
- C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- [05] Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- [06] Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- [07] Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C IX: ELEMENTS OF MODERN PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Atomic Spectra and Models

Inadequacy of classical physics, Brief Review of Black body Radiation, Photoelectric effect, Compton effect, dual nature of radiation, wave nature of particles. Atomic spectra, Line spectra of hydrogen atom, Ritz Rydberg combination principle. Alpha Particle Scattering, Rutherford Scattering Formula, Rutherford Model of atom and its limitations, Bohr's model of H atom, explanation of atomic spectra, correction for finite mass of the nucleus, Bohr correspondence principle, limitations of Bohr model, discrete energy exchange by atom, Frank Hertz Expt. Sommerfeld's Modification of Bohr's Theory. (13 Lectures)

UNIT-II

Wave Particle Duality

de Broglie hypothesis, Experimental confirmation of matter wave, Davisson Germer Experiment, velocity of de Broglie wave, wave particle duality, Complementarity. Superposition of two waves, phase velocity and group velocity , wave packets ,Gaussian Wave Packet , spatial distribution of wave packet, Localization of wave packet in time.

Time development of a wave Packet; Wave Particle Duality, Complementarity.

Heisenberg Uncertainty Principle, Illustration of the Principle through thought Experiments of Gamma ray microscope and electron diffraction through a slit. Estimation of ground state energy of harmonic oscillator and hydrogen atom, non existence of electron in the nucleus. Uncertainty and Complementarities.

(13 Lectures)

Nuclear Physics

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. (05 Lectures)

IINIT-IV

Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.

Fission and fusion: mass defect, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions).

(09 Lectures)

Reference Books:

- [01] Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- [02] Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- [03] Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- [04] Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- [05] Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan
- [06] Modern Physics Bernstein, Fishbane and Gasiorowicz (Pearson India) 2010
- [07] Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles -- R. Eisberg (Wiley India) 2012

Additional Books for Reference

- [01] Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.
- [02] Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edn, Tata McGraw-Hill Publishing Co. Ltd.
- [03] Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.
- [04] Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub.
- [05] Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill
- [06] Modern Physics-Serway (CENGAGE Learnings) 2014
- [07] Modern Physics ---Murugesan and Sivaprasad –(S. Chand Higher Academics)
- [08] Physics of Atoms and Molecules Bransden (Pearson India) 2003

PHYSICS PRACTICAL-C IX LAB

20 Classes (2hr duration)

- 1. Measurement of Planck's constant using black body radiation and photo-detector
- 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
- 3. To determine work function of material of filament of directly heated vacuumdiode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To show the tunneling effect in tunnel diode using I-V characteristics.
- 11. To determine the wavelength of laser or Sodium source using diffraction of single slit.

- 12. To determine the wavelength of laser or Sodium source using diffraction of double slits.
- 13. To determine (1) wavelength and (2) angular spread of He-Ne laser or Sodium source using plane diffraction grating

Reference Books

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia **Publishing House**
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal

PHYSICS-C X: ANALOG SYSTEMS AND APPLICATIONS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. (4 Lectures)

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, (2) Zener Diode and Voltage Regulation. (4 Lectures)

Unit-II

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β. Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. (5 Lectures)

Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. (4 Lectures)

Unit-III

Amplifiers: Classification of Class A, B & C Amplifiers. (2 Lectures)

Coupled Amplifier: RC-coupled amplifier and its frequency response. (4 Lectures)

Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. (4 Lectures)

Unit-IV

Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. (4 Lectures)

Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. (4 Lectures)

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. (5 Lectures)

Reference Books:

- [01] Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- [02] Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- [03] Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn.,2009, PHI Learning
- [04] Electronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- [05] OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- [06] Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- [07] Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India
- [08] Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India
- [09] Concept of Electronics: D.C.Tayal (Himalay Publication) 2011
- [10] Electronic devices: Circuits and Applications: W.D. Stanley Prentice Hall
- [11] Electronics- V. K. Meheta (S. Chand Publication)2013
- [12] Electronic Circuits: L.Schilling and Velove: 3rd Ed Mc Graw Hill
- [13] Electronics-Raskhit & Chattopadhyay (New age International Publication)2011
- [14] Electricity and Electronic-D.C.Tayal (Himalaya Pub.)2011
- [15] Electronic devices and circuits –R.L. Boylstad (Pearson India) 2009

PHYSICS PRACTICAL-C X LAB 20 Classes (2hr duration)

- 1. To study V-I characteristics of PN junction diode, or Light emitting diode.
- 2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
- 4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 5. To study the various biasing configurations of BJT for normal class A operation.
- 6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
- 8. To design a Wien bridge oscillator for given frequency using an op-amp.
- 9. To design a phase shift oscillator of given specifications using BJT.
- 10. To study the Colpitt's oscillator.
- 11. To design a digital to analog converter (DAC) of given specifications.
- 12. To study the analog to digital convertor (ADC) IC.
- 13. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain
- 14. To design inverting amplifier using Op-amp (741,351) and study its frequency response
- 15. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
- 16. To study the zero-crossing detector and comparator
- 17. To add two dc voltages using Op-amp in inverting and non-inverting mode
- 18. To design a precision Differential amplifier of given I/O specification using Op-amp.
- 19. To investigate the use of an op-amp as an Integrator.
- 20. To investigate the use of an op-amp as a Differentiator.
- 21. To design a circuit to simulate the solution of a 1st/2nd order differential equation.

- [01] Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- [02] OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.

[03] Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.

[04] Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson

Semester V

PHYSICS-C XI: QUANTUM MECHANICS AND APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

Unit-I

Schrodinger equation & the operators: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Hermitian operator, Eigen values and Eigen functions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. (8 Lectures)

Unit-II

Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigen values; expansion of an arbitrary wave function as a linear combination of energy eigen functions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wave function; Position-momentum uncertainty principle. (**6 Lectures**)

Unit-III

General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigen functions ground state, zero point energy & uncertainty principle. One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization;

Quantum mechanical scattering and tunnelling in one dimension-across a step potential & rectangular potential barrier. (14 Lectures)

Unit-IV

Atoms in Electric & Magnetic Fields: Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton.

Atoms in External Magnetic Fields:- Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only). (12 Lectures)

- [01] A Text book of Quantum Mechanics, P. M.Mathews and K.Venkatesan, 2nd Ed., 2010, McGraw Hill
- [02] Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- [03] Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- [04] Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- [05] Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- [06] Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer
- [07] Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press

- [08] Quantum Physics----S. Gasiorowicz (Wiley India) 2013
- [09] Quantum Mechanics -J.L. Powell and B. Craseman (Narosa) 1988
- [10] Introduction to Quantum Mechanics- M.Das, P.K.Jena, (SriKrishna Prakashan)
- [11] Basic Quantum Mechanics –A.Ghatak (Mc Millan India) 2012
- [12] Introduction to Quantum Mechanics R. Dicke and J. Wittke
- [13] Quantum Mechanics- Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
- [14] Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education
- [15] Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer
- [16] Quantum Mechanics F. Mandl (CBS) 2013
- [17] Cohen-Tannoudji, B Diu and F Laloë, Quantum Mechanics (2 vols) Wiley-VCH 1977

PHYSICS PRACTICAL-C XI LAB 20 Classes (2hr duration)

20 Classes (2m daration)

Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:

Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \approx -13.6 eV. Take e = 3.795 (eVÅ)1/2, $\hbar c$ = 1973 (eVÅ) and m = 0.511x106 eV/c2.

2. Solve the s-wave radial Schrodinger equation for an atom:

where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take e=3.795 (eVÅ)1/2, m=0.511x106 eV/c2, and a=3 Å, 5 Å, 7 Å. In these units hc=1973 (eVÅ). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass m: For the anharmonic oscillator potential

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose m=940~MeV/c2, k=100~MeV fm-2, b=0, 10, 30 MeV fm-3In these units, $c\hbar=197.3~\text{MeV}$ fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule:

Where μ is the reduced mass of the two-atom system for the Morse potential Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take: m = 940x106eV/C2, D = 0.755501 eV, $\alpha = 1.44$, ro = 0.131349 Å

Laboratory based experiments:

- 5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
- 6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
- 7. To show the tunneling effect in tunnel diode using I-V characteristics.
- 8. Quantum efficiency of CCDs

- [01] Schaum's outline of Programming with C++. J.Hubbard, 2000,McGraw-- Hill Publication
- [02] Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal., 3rd Edn.,

2007, Cambridge University Press.

[03] An introduction to computational Physics, T.Pang, 2nd Edn.,2006, Cambridge Univ. Press [04] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer.

[05] Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & Co. [06] Scilab Image Processing: L.M.Surhone.2010 Betascript Publishing ISBN:978-6133459274

PHYSICS-C XII: SOLID STATE PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Types of Lattices, Reciprocal Lattice. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law, Laue Method, Atomic and Geometrical Factor. (8 Lectures)

Unit-II

Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T³ law (6 Lectures)

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia—and Paramagnetic Domains. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss. (6 Lectures)

Unit-III

Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. (4 Lectures)

Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. (4 Lectures)

Unit-IV

Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (four probe method) & Hall coefficient. (8 Lectures)

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation) (4 Lectures)

- [01] Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- [02] Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- [03] Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- [04] Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- [05] Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- [06] Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- [07] Solid State Physics, M.A. Wahab, 2011, Narosa Publications

- [08] Solid State Physics S. O. Pillai (New Age Publication)
- [09] Solid State Physics- R.K.Puri &V.K. Babbar (S.Chand Publication)2013
- [10] Lasers and Non linear Optics –B.B.Laud-Wiley Eastern.
- [11] LASERS: Fundamentals and Applications Thyagarajan and Ghatak (McMillanIndia) 2012

PHYSICS PRACTICAL-C XII LAB

20 Classes (2 hr duration)

- 1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To measure the Magnetic susceptibility of Solids.
- 3. To determine the Coupling Coefficient of a Piezoelectric crystal.
- 4. To measure the Dielectric Constant of a dielectric Materials with frequency
- 5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- 6. To determine the refractive index of a dielectric layer using SPR
- 7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
- 9. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150°C) and to determine its band gap.
- 10. To determine the Hall coefficient of a semiconductor sample.
- 11. Half adder, Full adder Circuits.
- 12. Variation of magnetic field strength in a Solenoid.
- 13. To study characteristics of BJT.
- 14. To verify and study Logic Gates.

Reference Books

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11 th Ed., 2011, Kitab Mahal [04] Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India.

Semester VI

PHYSICS-C XIII: ELECTROMAGNETIC THEORY

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Maxwell Equations: Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density. **(06 Lectures)**

Unit-II

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.

Propagation through conducting media, relaxation time, skin depth. Electrical conductivity of

ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. (06 Lectures)

Unit-III

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases,

Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence)

Optical Fibres:- Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).(14 Lectures)

Unit-IV

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light. (14 Lectures)

Reference Books:

- [01] Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- [02] Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
- [03] Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- [04] Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
- [05] Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- [06] Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
- [07] Electricity and Magnetism --- D C Tayal (Himalaya Publication)2014
- [08] Introduction to Electrodynamics-A.Z.Capri & P.V.Panat (Alpha Science) 2002
- [09] Optics E.Hecht, (Pearson India)

Additional Books for Reference

- [01] Electromagnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H.Freeman & Co.
- [02] Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- [03] Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press.
- [04] Electromagnetic Theory-A. Murthy (S. Chand Publication)2014
- [05] Classical Electrodynamics, J. D. Jackson (Wiley India)

PHYSICS PRACTICAL-C XIII LAB 20 Classes (2hr duration)

- 1. To verify the law of Malus for plane polarized light.
- 2. To determine the specific rotation of sugar solution using Polarimeter.
- 3. To analyze elliptically polarized Light by using a Babinet's compensator.
- 4. To study dependence of radiation on angle for a simple Dipole antenna.
- 5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.
- 6. To study the reflection, refraction of microwaves
- 7. To study Polarization and double slit interference in microwaves.
- 8. To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.
- 9.To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
- 10. To study the polarization of light by reflection and determine the polarizing angle for air-

glass interface.

- 11. To verify the Stefan's law of radiation and to determine Stefan's constant.
- 12. To determine the Boltzmann constant using V-I characteristics of PN junction diode.

Reference Books

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

[04] Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

PHYSICS-C XIV: STATISTICAL MECHANICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Classical Statistics: Macrostate & Microstate, Elementary Concept of Ensemble, Microcanonical, Canonical and grand canonical ensemble. Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function (07 Lectures)

Unit-II

Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature. (07 Lectures)

Unit-III

Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law.(13 Lectures)

Unit-IV

Quantum Statistics: Identical particles, macrostates and micro states. Fermions and Bosons, Bose Einstein distribution function and Fermi-Dirac Distribution function. Bose-Einstein Condensation, Bose deviation from Planck's law, Effect of temperature on F-D distribution function, degenarate Fermi Gas, Density of States, Fermi energy. **(13 Lectures)**

Reference Books:

- [01] Statistical Mechanics-R.K.Pathria & Paul D. Beale (Academic Press) 3rd Edition (2011)
- [02] Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill
- [03] Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall
- [04] Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- [05] Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- [06] An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press.
- [07] An introduction to Equilibrium Statistical Mechanics: Palash Das (I.K.International Publication) 2012
- [08] Statistical Physics -- F. Mandl (CBS) 2012
- [09] Statistical Physics of Particles-M. Kardar (CUP 2007)

PHYSICS PRACTICAL-C XIV LAB

20 Classes (2hr duration)

Use C/C++/Scilab for solving the problems based on Statistical Mechanics like

- 1.Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.
- 2.Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases
- 3. Plot Maxwell-Boltzmann distribution function versus temperature.
- 4. Plot Fermi-Dirac distribution function versus temperature.
- 5. Plot Bose-Einstein distribution function versus temperature.

Reference Books:

- [01] Elementary Numerical Analysis, K.E.Atkinson, 3 rd Edn. 2007, Wiley India Edition
- [02] Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- [03] Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- [04] Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- [05] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- [06] Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- [07] Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub., ISBN: 978-6133459274

DSE-1 CLASSICAL DYNAMICS

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

Unit-I

Classical Mechanics of Point Particles: Generalised coordinates and velocities. Hamilton's Principle, Lagrangian and Euler-Lagrange equations. Applications to simple systems such as coupled oscillators. Canonical momenta & Hamiltonian. Hamilton's equations of motion.(15 Lectures)

Unit-II

Applications: Hamiltonian for a harmonic oscillator, particle in a central force field. Motion of charged particles in external electric and magnetic fields. (10 Lectures)

Unit-III

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Spacetime diagrams. Time-dilation, length contraction & twin paradox. (12 Lectures)

Unit-IV

Four-vectors: space-like, time-like & light-like. Four-velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. (13 Lectures)

- [01] Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
- [02] Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
- [03] Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.
- [04] Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press
- [05] Classical Mechanics-J. C. Upadhyay (Himalaya Publication) 2014
- [06] Classical Dynamics of Particles and Systems S. T. Thornton (Cengage Learning) 2012
- [07] Introduction to Classical Mechanics-R. K. Takwale, S.Puranik-(Tata Mc Graw Hill)
- [08] Classical Mechanics-M. Das, P.K.Jena, M. Bhuyan, R.N.Mishra (Srikrishna Prakashan)

PHYSICS-DSE-2: Nuclear and Particle Physics (Credits: Theory-05, Tutorials-01)

Theory: 50 Classes (1hr duration)

Unit-I

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model.(12 Lectures) **Unit-II**

Radioactivity decay:(a) Alpha decay: basics of α -decay processes, theory of α - emission, Gamow factor, Geiger Nuttall law. (b) β -decay: energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis. (c) Elementary idea of Gamma decay.

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value,

(13 Lectures)

Unit-III

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

Particle Accelerators: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons. (15 Lectures)

Unit-IV

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm. Elementary ideas of quarks and gluons.(10 Lectures)

Reference Books:

- [01] Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- [02] Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
- [03] Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- [04] Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- [05] Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (IOP-Institute of Physics Publishing, 2004).
- [06] Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991)
- [07] Atomic and Nuclear Physics -A. B. Gupta, Dipak Ghosh. (Books and Allied Publishers)
- [08] Physics of Atoms and Molecules Bransden (Pearson India) 2003
- [09] Subatomic Physics Henley and Gracia (World Scientific) 2012
- [10] Introduction to Nuclear and Particle Physics-A.Das and T.Ferbel (World Scientific)
- [11] Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

PHYSICS-DSE: Nano Materials and Applications

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

Unit-I

Nanoscale Systems: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation-Infinite potential well, potential step, potential box, quantum confinement of carriers in

3D, 2D, 1D nanostructures and its consequences. (10 Lectures)

Unit-II

Synthesis Of Nanostructure Materials: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.(**15 Lectures**)

Unit-III

Characterization: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy. Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron devices (no derivation). CNT based transistors. (15 Lectures)

Unit-IV

Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).(10 Lectures)

Reference books:

- [01] C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- [02] S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- [03] K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- [04] Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- [05] M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).
- [06] Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).
- [07] Nanotechnology- Rakesh Rathi (S Chand & Company, New Delhi)

Skill Enhancement Course RENEWABLE ENERGY AND ENERGY HARVESTING (Credits: 02) Theory: 20 Classes (1hr duration)

The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible

Unit-I

Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.(**05 Lectures**)

Unit-II

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. **(05 Lectures)**

Unit-III

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.

Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices.

Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass. (05 Lectures)

Unit-IV

Geothermal Energy: Geothermal Resources, Geothermal Technologies.

Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydropower sources. **(05 Lectures)**

Reference Books:

- [01] Non-conventional energy sources G.D Rai Khanna Publishers, New Delhi
- [02] Solar energy M P Agarwal S Chand and Co. Ltd.
- [03] Solar energy Suhas P Sukhative Tata McGraw Hill Publishing Company Ltd.
- [04] Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
- [05] Dr. P Jayakumar, Solar Energy: Resource Assesment Handbook, 2009
- [06] J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).
- [07] http://en.wikipedia.org/wiki/Renewable_energy

Generic Elective Papers (GE) (Minor-Physics) (any two) for other Departments/Disciplines: (Credit: 06 each)

GE: MECHANICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. (2 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (2 Lectures)

Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. (4 Lectures)

Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. (2 Lectures)

UNIT-II

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (3 Lectures)

Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS). Weightlessness. Physiological effects on astronauts.

(7Lectures)

UNIT-III

Elasticity: Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method. (8 Lectures)

UNIT-IV

Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. (6 Lectures)

Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. **(6 Lectures)**

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate

Reference Books:

- [01] University Physics. F.W. Sears, M.W. Zemansky and H.D. Young, 13/e, 1986. Addison-Wesley
- [02] Mechanics Berkeley Physics, Vol..1: Charles Kittel, et. al. 2007, Tata McGraw-Hill.
- [03] Physics Resnick, Halliday & Walker 9/e, 2010, Wiley
- [04] University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- [05] Properties of Matter D.S. Mathur (S.Chand publication) 2013
- [06] Mechanics- D.C. Tayal (Himalaya Publication) 2013
- [07] Classical Dynamics of Particles and Systems –S. T. Thornton (Cengage Learning) 2012
- [08] Analytical Mechanics-Fowles (Cengage Learnings) 2014
- [09] Classical Mechanics-M.Das, P.K.Jena, M.Bhuyan and R.N.Mishra (Srikrishna Publication)

PHYSICS LAB: GE LAB: MECHANICS 20 Classes (2hr duration)

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
- 2. To determine the Height of a Building using a Sextant.
- 3. To determine the Moment of Inertia of a Flywheel.
- 4. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 5. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 6. To determine the Elastic Constants of a Wire by Searle's method.
- 7. To determine g by Bar Pendulum.
- 8. To determine g by Kater's Pendulum.
- 9. To study the Motion of a Spring and calculate (a) Spring Constant, (b) g.

Reference Books:

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- [03] A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

GE: ELECTRICITY, MAGNETISM AND EMT

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Vector Analysis: Scalar and Vector product, gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). (8 Lectures)

UNIT-II

Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line

integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. (12 Lectures)

UNIT-III

Magnetism:

Magnetostatics: Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferromagnetic materials. (6 Lectures)

Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.(4 Lectures)

UNIT-IV

Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. (10 Lectures)

Reference Books:

- [01] Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
- [02] Electricity & Magnetism, J.H. Fewkes & J. Yarwood. Vol. I, 1991, Oxford Univ. Press
- [03] Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing House.
- [04] University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- [05] D.J.Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.
- [06] Electricity and Magnetism- K.K Tewari (S. Chand Higher Academics)2013

GE LAB: ELECTRICITY, MAGNETISM AND EMT 20 Classes (2hr duration)

- 1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
- 2. Ballistic Galvanometer:
- (i) Measurement of charge and current sensitivity
- (ii) Measurement of CDR
- (iii) Determine a high resistance by Leakage Method
- (iv) To determine Self Inductance of a Coil by Rayleigh's Method.
- 3. To compare capacitances using De'Sauty's bridge.
- 4. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx)
- 5. To study the Characteristics of a Series RC Circuit.
- 6. To study a series LCR circuit LCR circuit and determine its (a) Resonant frequency, (b) Quality factor
- 7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and
- (b) Quality factor Q
- 8. To determine a Low Resistance by Carey Foster's Bridge.
- 9. To verify the Thevenin and Norton theorems
- 10. To verify the Superposition, and Maximum Power Transfer Theorems

Reference Books

- [01] Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed.2011, Kitab Mahal

B.Sc. PHYSICS Honours Syllabus Under CHOICE BASED CREDIT SYSTEM

1st & 2nd Semester: 2017-18 onwards 3rd & 4th Semester: 2018-19 onwards 5th & 6th Semester: 2019-20 onwards

Post Graduate Department of Physics Khallikote University

CORE COURSE (HONOURS IN PHYSICS)

Semester I

PHYSICS-C I: MATHEMATICAL PHYSICS-I

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

UNIT-I

Vector Calculus:

Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields. (6 Lectures)

Calculus:

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. (4 Lectures)

UNIT-II

Dirac Delta function and its properties:

Definition of Dirac delta function. Properties of Dirac delta function. (2 Lectures)

Vector Differentiation: Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities, Numericals (8 **Lectures**)

UNIT-III

Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications. (12 Lectures)

UNIT-IV

Orthogonal Curvilinear Coordinates:

Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. Comparison of velocity and acceleration in cylindrical and spherical coordinate system. (8 Lectures)

- [01] Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013,7th Edn., Elsevier.
- [02] An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning.
- [03]Differential Equations, George F. Simmons, 2007, McGraw Hill.
- [04] Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- [05]Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book
- [06] Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning

[07] Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.

[08]Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press

[09] Mathematical Physics and Special Relativity, M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) $2^{\rm nd}$ Edition 2009

- [10]Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- [11] Mathematical Physics C. Harper, (Prentice Hall India) 2006.
- [12]Mathematical Physics-Goswami (Cengage Learning) 2014
- [13] Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006

PHYSICS LAB- C I LAB: **20** Classes (2 hr duration)

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- The course will consist of lectures (both theory and practical) in the Lab
- Evaluation done not on the programming but on the basis of formulating the problem
- Aim at teaching students to construct the computational problem to be solved
- Students can use any one operating system Linux or Microsoft Windows

Description with Applications	
Computer architecture and organization, memory and	
Input/output devices.	
Binary and decimal arithmetic, Floating point numbers, algorithms, Sequence, Selection and Repetition, single and double precision arithmetic, underflow & overflow emphasize the importance of making equations in terms	
of dimensionless variables, Iterative methods.	
Truncation and round off errors, Absolute and relative errors, Floating point computations.	
Introduction to Programming, constants, variables and	
data types, operators and Expressions, I/O statements, scanf and printf, c in and c out, Manipulators for data formatting, Control statements (decision making and looping statements) (Ifstatement. Ifelse Statement. Nested if Structure. Elseif Statement. Ternary Operator.	

FOR Loop. Break and Continue Statements. Nested Loops), Arrays (1D & 2D) and strings, user defined functions, Structures and Unions, Idea of classes and objects. Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search Area of circle, area of square, volume of sphere, value

Goto Statement. Switch Statement. Unconditional and Conditional Looping. While Loop. Do-While Loop.

of π .

Programs:

Random number generation

Any other experiments as and when they are set up.

Referred Books:

[01] Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.

[02]Schaum's Outline of Programming with C++. J. Hubbard, 2000, McGraw---Hill Pub.

[03]Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal, 3rd Edn. 2007, Cambridge University Press.

[04] A first course in Numerical Methods, U.M. Ascher & C. Greif, 2012, PHI Learning.

[05] Elementary Numerical Analysis, K.E. Atkinson, 3 rd Edn., 2007, Wiley India Edition.

[06] Numerical Methods for Scientists & Engineers, R.W. Ḥamming, 1973, Courier Dover Pub.

[07]An Introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press.

PHYSICS-C II: MECHANICS (Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Rotational Dynamics: Motion under central force, Acceleration in Polar coordinates, Centre of Mass and Laboratory frames. Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Bar and Katers Pendulum – Corrections.

(10 Lectures)

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications.

(4 Lectures)

UNIT-II

Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire.(**3 Lectures**) **Fluid Motion:** Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.(**2 Lectures**)

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere.

(3 Lectures)

Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). Physiological effects on astronauts. (5 Lectures)

UNIT-III

Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. (**5 Lectures**)

UNIT-IV

Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Massenergy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. (8 Lectures)

Reference Books:

[01] An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.

[02] Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.

[03] Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.

[04] Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.

[05] Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education

[06]Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.

[07] University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

Additional Books for Reference

[01] Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000

[02]University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley

[03] Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A. Serway, 2010, Cengage Learning

[04] Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.

[05]Mechanics - J. C. Slater and N. H. Frank (McGraw-Hill)

PHYSICS LAB-C II LAB

20 Classes (2hr duration)

- 1. To study the random error in observations.
- 2. To determine the height of a building using a Sextant.
- 3. To study the Motion of Spring and calculate (a) Spring constant, (b) **g** and (c) Modulus of rigidity.
- 4. To determine the Moment of Inertia of a Flywheel.
- 5. To determine **g** and velocity for a freely falling body using Digital Timing Technique
- 6. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 7. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 8. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 9. To determine the elastic Constants of a wire by Searle's method.
- 10. To determine the value of g using Bar Pendulum.
- 11. To determine the value of g using Kater's Pendulum
- 12. To determine the Young's Modulus by single cantilever/Double Cantilever.
- 13. To study the laws of transverse vibration of strings by Sonometer.
- 14. To calibrate the set of weights.

Reference Books

[01] Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House

[02]Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

[03]A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal

Semester II

PHYSICS-C III: ELECTRICITY AND MAGNETISM (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Electric Field and Electric Potential

Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. (3 Lectures)

Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. (3 Lectures)

Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. (4 Lectures)

UNIT-II

Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector **D**. Relations between **E**, **P** and **D**. Gauss' Law in dielectrics. (4 Lectures)

Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B, H, M. Ferromagnetism. B-H curve and hysteresis. (5 Lectures)

UNIT-III

Magnetic Field: Magnetic force between current elements and definition of Magnetic Field B. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Ballistic Galvanometer: Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. (12 Lectures)

UNIT-IV

Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. (3 Lectures)

Electrical Circuits: AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit. (6 Lectures)

Reference Books:

[01] Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw

[02] Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education

[03]Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.

[04] Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education

[05] Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.

[06] Electricity and Magnetism, J.H.Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. Press.

PHYSICS LAB-C III LAB 20 Classes (2hr duration)

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the characteristics of a series RC Circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- 7. To verify the Thevenin and Norton theorems.

- 8. To verify the Superposition, and Maximum power transfer theorems.
- 9. To determine self inductance of a coil by Anderson's bridge.
- 10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency,
 - (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- 11. To study the response curve of a parallel LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q.
- 12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
- 13. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 14. To determine self-inductance of a coil by Rayleigh's method.
- 15. To determine the mutual inductance of two coils by Absolute method.
- 16. To determine the low resistance of a wire using Potentiometer.
- 17. To determine the low resistance of a wire using Carey-foster's bridge.
- 18. To compare capacitances by de Sauty's Bridge.
- 19. To determine the resistance of Ballistic Galvanometer by Half Deflection method.
- 20. To determine the figure of merit of a Ballistic Galvanometer

Reference Books

[01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House

[02] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

[03] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

[04] A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Publications.

PHYSICS-C IV: WAVES AND OPTICS

(Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Geometrical optics: Fermat's principle, reflection and refraction at plane interface, Matrix formulation of geometrical Optics. Idea of dispersion. Application to thick lense, Ramsden and Huygens eyepiece. (4 Lectures)

Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. (**4 Lectures**)

UNIT-II

Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. Superposition of N harmonic waves.

(2 Lectures)

Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. (3 Lectures)

Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment.(**3 Lectures**)

UNIT-III

Interference: Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index. (**5 Lectures**)

Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5)

Visibility of Fringes. Fabry-Perot interferometer. (5 Lectures)

UNIT-IV

Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating. (7 Lectures)

Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.

(7 Lectures)

Reference Books

- [01] Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- [02] Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- [03] Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- [04] Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- [05] The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- [06] The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- [07] Optics Brijlal & Subramaniam- (S. Chand Publication) 2014.
- [08] Geometrical and Physical Optics R.S. Longhurst, Orient Blackswan, 01-Jan-1986
- [09] Vibrations and Waves -- A. P. French, (CBS) Indian print 2003
- [10] Optics, E. Hecht (Pearson India)

PHYSICS LAB- C IV LAB

20 Classes (2hr duration)

- 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 T law.
- 2. To investigate the motion of coupled oscillators.
- 3. To study Lissajous Figures.
- 4. Familiarization with: Schuster's focusing; determination of angle of prism.
- 5. To determine refractive index of the Material of a prism using sodium source.
- 6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
- 7. To determine the wavelength of sodium source using Michelson's interferometer.
- 8. To determine wavelength of sodium light using Fresnel Biprism.
- 9. To determine wavelength of sodium light using Newton's Rings.
- 10.To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
- 11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 12. To determine dispersive power and resolving power of a plane diffraction grating.
- 13. To determine dispersive power and Cauchys constant using Hg-Source.

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- [02] A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- [03] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition,reprinted 1985, Heinemann Educational Publishers
- [04] A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani

Semester III

PHYSICS-C V: MATHEMATICAL PHYSICS-II

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity.

(10 Lectures)

UNIT-II

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. (4 Lectures)

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. (4 Lectures)

UNIT-II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance, Frobenius method and its applications to differential equations: Legendre & Hermite Differential Equations. Properties of Legendre & Hermite Polynomials, Bassel: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Associated Legendre polynomials and spherical harmonics. (12 Lectures)

UNIT-IV

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Solution of variable heat flow equation, Wave equation and its solution for vibrational modes of a stretched string. (10 Lectures)

- [01] Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- [02] Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- [03] Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- [04] Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- [05] Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.
- [06] Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books
- [07] Mathematical Physics and Special Relativity --M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) 2nd Edition 2009
- [08] Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics), 6th Edition 2011.
- [09] Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- [10] Mathematical Physics-Goswami (CENGAGE Learning) 2014
- [11] Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006

- [12] Mathematics for Physicists, P. Dennery and A. Krzywicki Dover)
- [13] Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.

[10] 120 (110) (110

PHYSICS LAB-C V LAB 20 Classes (2hr duration)

The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the problem.

Topics

Introduction to Numerical computation software Scilab

Description with Applications

Introduction to Scilab, Advantages and disadvantages, Scilab environment, Command window, Figure window, Edit window, Variables and arrays, Initialising variables in Scilab, Multidimensionalarrays, Subarray, Special values, Displaying output data, data file, Scalar and array operations, Hierarchy of operations, Built in Scilab functions, Introduction to plotting, 2D and 3D plotting (2), Branching Statements and program design, Relational & logical operators, the while loop, for loop, details of loop operations, break & continue statements, nested loops, logical arrays and vectorization (2) User defined functions, Introduction to Scilab functions, Variable passing in Scilab, optional arguments, preserving data between calls to a function, Character Complex and data, string function.

Multidimensional arrays (2) an introduction to Scilab file processing, file opening and closing, Binary I/o functions, comparing binary and formatted functions, Numerical methods and developing the skills of writing a program (2).

Curve fitting, Least square fit, Goodness of fit, standard deviation Ohms law to calculate R, Hooke's law to calculate spring constant

Solution of Linear system of equations by Gauss elimination method and Gauss Seidal method. Diagonalization of matrices, Inverse of a matrix, Eigen vectors, eigen values Problems Solution of mesh equations of electric circuits (3 meshes) Solution of coupled spring mass systems (3 masses)

Solution of ODE

First order Differential equation Euler, modified Euler and Runge-Kuttasecond order methods

Second order differential equation.

Fixed difference method

First order differential equation

- Radioactive decay
- Current in RC, LC circuits with DC source
- order Newton's law of cooling
 - Classical equations of motion

Second order Differential Equation

- Harmonic oscillator (no friction)
- Damped Harmonic oscillator
- Over damped
- Critical damped

- Oscillatory
- Forced Harmonic oscillator
- Transient and
- Steady state solution
- Apply above to LCR circuits also

Reference Books:

- [01] Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J.20 Bence, 3rd ed., 2006, Cambridge University Press
- [02] Complex Variables, A.S. Fokas & M.J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- [03] First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett
- [04] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A.V. Wouwer, P. Saucez, C.V. Fernández. 2014 Springer
- [05] Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
- [06] Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- [07] Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C VI: THERMAL PHYSICS

(Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration) (*Include related problems for each topic*)

UNIT-I

Introduction to Thermodynamics

Recapitulation of Zeroth and First law of thermodynamics.

Second Law of Thermodynamics: Reversible and Irreversible process with examples.

Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics. (7 Lectures)

Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Principle of Increase of Entropy. Temperature—Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. (7 Lectures)

UNIT-II

Thermodynamic Potentials: Extensive and Intensive Thermodynamic Variables. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and Ehrenfest equations (6 Lectures)

Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) Tds Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. (6 Lectures)

UNIT-III

Kinetic Theory of Gases

Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. (4 Lectures)

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. (4 Lectures)

UNIT-IV

Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO₂ Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. p-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. (6 Lectures)

Reference Books:

- [01] Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- [02] A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
- [03] Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- [04] Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- [05] Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.
- [06] Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press.
- [07] Heat and Thermal Physics-Brijlal & Subramaiam (S.Chand Publication) 2014
- [08] Thermal Physics-- C. Kittel and H. Kroemer (McMillan Education India) 2010

PHYSICS LAB- C VI LAB

20 Classes (2hr duration)

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- 4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
- 5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).
- 6. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.
- 7. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.
- 8. To determine J by Caloriemeter.

- [01] Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- [02] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- [03] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [04] A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

PHYSICS-C VII: DIGITAL SYSTEMS AND

APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Integrated Circuits (Qualitative treatment only): Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs. (3 Lectures)

Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. (5 Lectures)

Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. (3 Lectures)

UNIT-II

Digital Circuits: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers. (**5 Lectures**)

Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map.

(5 Lectures)

UNIT-III

Introduction to CRO: Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. (3 Lectures)

Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.

(4 Lectures)

UNIT-IV

Introduction to Computer Organization: Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map. (6 Lectures)

Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). (2 Lectures)

Counters(4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. (4 Lectures)

- [01] Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw
- [02] Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- [03] Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- [04] Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning
- [05] Logic circuit design, Shimon P. Vingron, 2012, Springer.
- [06] Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- [07] Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall.
- [08] Concept of Electronics: D.C.Tayal (Himalay Publication) 2011
- [09] Electronics-V. K. Meheta (S. Chand Publication)2013

PHYSICS PRACTICAL-C VII LAB

20 Classes (2hr duration)

- 1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
- 2. To test a Diode and Transistor using a Multimeter.
- 3. To design a switch (NOT gate) using a transistor.
- 4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 5. To design a combinational logic system for a specified Truth Table.
- 6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
- 7. To minimize a given logic circuit.
- 8. Half Adder, Full Adder and 4-bit binary Adder.
- 9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
- 10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
- 11. To build JK Master-slave flip-flop using Flip-Flop ICs
- 12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- 13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
- 14. To design an astable multivibrator of given specifications using 555 Timer.
- 15. To design a monostable multivibrator of given specifications using 555 Timer.

Reference Books:

- [01] Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.
- [02] Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- [03] Microprocessor Architecture Programming and applications with 8085,
- R.S. Goankar, 2002, Prentice Hall.
- [04] Microprocessor 8085:Architecture, Programming and interfacing, A. Wadhwa, 2010, PHI Learning.

Semester IV

PHYSICS-VIII: MATHEMATICAL PHYSICS-III

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Complex Analysis: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Simple application in solving Definite Integrals. (14 Lectures)

UNIT-II

Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). (8 Lectures)

UNIT-III

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. (6 Lectures)

UNIT-IV

Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations. (6 Lectures)

Application of Laplace Transforms to Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits. (6 Lectures)

Reference Books:

- [01] Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press
- [02] Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- [03] Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.
- [04] Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
- [05] Complex Variables, A. S. Fokas & M. J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- [06] Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill
- [07] First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett.
- [08] Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- [09] Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- [10] Mathematical Physics-Goswami (Cengage Learning) 2014
- [11] Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006
- [12] Introduction to the theory of functions of a complex variable- E.T.Copson (Oxford) Univ. Press, 1970

PHYSICS PRACTICAL-C VIII LAB

20 Classes (2hr duration)

Scilab based simulations experiments based on Mathematical Physics problems like

1. Solve differential equations:

$$dy/dx = e^{-x} \text{ with } y = 0 \text{ for } x = 0$$

$$dy/dx + e^{-x} y = x^{2}$$

$$d^{2}y/dt^{2} + 2 dy/dt = -y$$

$$d^{2}y/dt^{2} + e^{-t}dy/dt = -y$$

2. Dirac Delta Function:

Evaluate _____ dx for σ =1,0.1, 0.01 and show it tends to 5

3. Fourier Series:

Program to sum

Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions:

Plot $P_n(x)$, $J_{\nu}(x)$

Show recursion relation

- 5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).
- 6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.
- 7. Evaluation of trigonometric functions e.g. $\sin \theta$, Given Bessel's function at N points find its value at an intermediate point. Complex analysis: Integrate $1/(x^2+2)$ numerically and check with computer integration.
- 8. Integral transform: FFT of e^{-x2}

Reference Books:

- [01] Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and
- S. J. Bence, 3rd ed., 2006, Cambridge University Press
- [02] Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
- [03] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB:
- [04] Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez,
- C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- [05] Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- [06] Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- [07] Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C IX: ELEMENTS OF MODERN PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Atomic Spectra and Models

Inadequacy of classical physics, Brief Review of Black body Radiation, Photoelectric effect, Compton effect, dual nature of radiation, wave nature of particles. Atomic spectra, Line spectra of hydrogen atom, Ritz Rydberg combination principle. Alpha Particle Scattering, Rutherford Scattering Formula, Rutherford Model of atom and its limitations, Bohr's model of H atom, explanation of atomic spectra, correction for finite mass of the nucleus, Bohr correspondence principle, limitations of Bohr model, discrete energy exchange by atom, Frank Hertz Expt. Sommerfeld's Modification of Bohr's Theory. (13 Lectures)

UNIT-II

Wave Particle Duality

de Broglie hypothesis, Experimental confirmation of matter wave, Davisson Germer Experiment, velocity of de Broglie wave, wave particle duality, Complementarity. Superposition of two waves, phase velocity and group velocity, wave packets, Gaussian Wave Packet, spatial distribution of wave packet, Localization of wave packet in time.

Time development of a wave Packet; Wave Particle Duality, Complementarity.

Heisenberg Uncertainty Principle, Illustration of the Principle through thought Experiments of Gamma ray microscope and electron diffraction through a slit. Estimation of ground state energy of harmonic oscillator and hydrogen atom, non existence of electron in the nucleus. Uncertainty and Complementarities.

(13 Lectures)

Nuclear Physics

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers. (05 Lectures)

IINIT-IV

Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.

Fission and fusion: mass defect, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions).

(09 Lectures)

Reference Books:

- [01] Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- [02] Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- [03] Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- [04] Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- [05] Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan
- [06] Modern Physics Bernstein, Fishbane and Gasiorowicz (Pearson India) 2010
- [07] Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles -- R. Eisberg (Wiley India) 2012

Additional Books for Reference

- [01] Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.
- [02] Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edn, Tata McGraw-Hill Publishing Co. Ltd.
- [03] Quantum Physics, Berkeley Physics, Vol.4. E.H.Wichman, 1971, Tata McGraw-Hill Co.
- [04] Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub.
- [05] Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill
- [06] Modern Physics-Serway (CENGAGE Learnings) 2014
- [07] Modern Physics ---Murugesan and Sivaprasad –(S. Chand Higher Academics)
- [08] Physics of Atoms and Molecules Bransden (Pearson India) 2003

PHYSICS PRACTICAL-C IX LAB

20 Classes (2hr duration)

- 1. Measurement of Planck's constant using black body radiation and photo-detector
- 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
- 3. To determine work function of material of filament of directly heated vacuumdiode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To show the tunneling effect in tunnel diode using I-V characteristics.
- 11. To determine the wavelength of laser or Sodium source using diffraction of single slit.

- 12. To determine the wavelength of laser or Sodium source using diffraction of double slits.
- 13. To determine (1) wavelength and (2) angular spread of He-Ne laser or Sodium source using plane diffraction grating

Reference Books

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011,Kitab Mahal

PHYSICS-C X: ANALOG SYSTEMS AND APPLICATIONS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. (**4 Lectures**)

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, (2) Zener Diode and Voltage Regulation. (4 Lectures)

Unit-II

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. (**5 Lectures**)

Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains.

(4 Lectures)

Unit-III

Amplifiers: Classification of Class A, B & C Amplifiers. (2 Lectures)

Coupled Amplifier: RC-coupled amplifier and its frequency response. (4 Lectures)

Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. (4 Lectures)

Unit-IV

Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. (4 Lectures)

Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. (4 Lectures)

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. (5 Lectures)

Reference Books:

- [01] Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- [02] Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- [03] Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn., 2009, PHI Learning
- [04] Electronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- [05] OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- [06] Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- [07] Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India
- [08] Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India
- [09] Concept of Electronics: D.C.Tayal (Himalay Publication) 2011
- [10] Electronic devices: Circuits and Applications: W.D. Stanley Prentice Hall
- [11] Electronics- V. K. Meheta (S. Chand Publication)2013
- [12] Electronic Circuits: L.Schilling and Velove: 3rd Ed Mc Graw Hill
- [13] Electronics-Raskhit & Chattopadhyay (New age International Publication)2011
- [14] Electricity and Electronic-D.C.Tayal (Himalaya Pub.)2011
- [15] Electronic devices and circuits –R.L. Boylstad (Pearson India) 2009

PHYSICS PRACTICAL-C X LAB 20 Classes (2hr duration)

- 1. To study V-I characteristics of PN junction diode, or Light emitting diode.
- 2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
- 4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 5. To study the various biasing configurations of BJT for normal class A operation.
- 6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
- 8. To design a Wien bridge oscillator for given frequency using an op-amp.
- 9. To design a phase shift oscillator of given specifications using BJT.
- 10. To study the Colpitt's oscillator.
- 11. To design a digital to analog converter (DAC) of given specifications.
- 12. To study the analog to digital convertor (ADC) IC.
- 13. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain
- 14. To design inverting amplifier using Op-amp (741,351) and study its frequency response
- 15. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
- 16. To study the zero-crossing detector and comparator
- 17. To add two dc voltages using Op-amp in inverting and non-inverting mode
- 18. To design a precision Differential amplifier of given I/O specification using Op-amp.
- 19. To investigate the use of an op-amp as an Integrator.
- 20. To investigate the use of an op-amp as a Differentiator.
- 21. To design a circuit to simulate the solution of a 1st/2nd order differential equation.

- [01] Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- [02] OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.

[03] Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.

[04] Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson

Semester V

PHYSICS-C XI: QUANTUM MECHANICS AND APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

Unit-I

Schrodinger equation & the operators: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Hermitian operator, Eigen values and Eigen functions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. (8 Lectures)

Unit-II

Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigen values; expansion of an arbitrary wave function as a linear combination of energy eigen functions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wave function; Position-momentum uncertainty principle. (**6 Lectures**)

Unit-III

General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigen functions ground state, zero point energy & uncertainty principle. One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization;

Quantum mechanical scattering and tunnelling in one dimension-across a step potential & rectangular potential barrier. (14 Lectures)

Unit-IV

Atoms in Electric & Magnetic Fields: Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton.

Atoms in External Magnetic Fields:- Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only). (12 Lectures)

- [01] A Text book of Quantum Mechanics, P. M.Mathews and K.Venkatesan, 2nd Ed., 2010, McGraw Hill
- [02] Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- [03] Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- [04] Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- [05] Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- [06] Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer
- [07] Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press

- [08] Quantum Physics----S. Gasiorowicz (Wiley India) 2013
- [09] Quantum Mechanics -J.L. Powell and B. Craseman (Narosa) 1988
- [10] Introduction to Quantum Mechanics- M.Das, P.K.Jena, (SriKrishna Prakashan)
- [11] Basic Quantum Mechanics –A.Ghatak (Mc Millan India) 2012
- [12] Introduction to Quantum Mechanics R. Dicke and J. Wittke
- [13] Quantum Mechanics- Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
- [14] Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education
- [15] Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer
- [16] Quantum Mechanics F. Mandl (CBS) 2013
- [17] Cohen-Tannoudji, B Diu and F Laloë, Quantum Mechanics (2 vols) Wiley-VCH 1977

PHYSICS PRACTICAL-C XI LAB 20 Classes (2hr duration)

20 Classes (2m daration)

Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:

Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \approx -13.6 eV. Take e = 3.795 (eVÅ)1/2, $\hbar c$ = 1973 (eVÅ) and m = 0.511x106 eV/c2.

2. Solve the s-wave radial Schrodinger equation for an atom:

where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take e=3.795 (eVÅ)1/2, m=0.511x106 eV/c2, and a=3 Å, 5 Å, 7 Å. In these units hc=1973 (eVÅ). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass m: For the anharmonic oscillator potential

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose m=940~MeV/c2, k=100~MeV fm-2, b=0, 10, 30 MeV fm-3In these units, $c\hbar=197.3~\text{MeV}$ fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule:

Where μ is the reduced mass of the two-atom system for the Morse potential Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function.

Take: m = 940x106eV/C2, D = 0.755501 eV, $\alpha = 1.44$, ro = 0.131349 Å

Laboratory based experiments:

- 5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
- 6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
- 7. To show the tunneling effect in tunnel diode using I-V characteristics.
- 8. Quantum efficiency of CCDs

- [01] Schaum's outline of Programming with C++. J.Hubbard, 2000,McGraw-- Hill Publication
- [02] Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal., 3rd Edn.,

2007, Cambridge University Press.

[03] An introduction to computational Physics, T.Pang, 2nd Edn.,2006, Cambridge Univ. Press [04] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer.

[05] Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & Co. [06] Scilab Image Processing: L.M.Surhone.2010 Betascript Publishing ISBN:978-6133459274

PHYSICS-C XII: SOLID STATE PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Types of Lattices, Reciprocal Lattice. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law, Laue Method, Atomic and Geometrical Factor. (8 Lectures)

Unit-II

Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T³ law (6 Lectures)

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia—and Paramagnetic Domains. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss. (6 Lectures)

Unit-III

Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. (4 Lectures)

Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. (4 Lectures)

Unit-IV

Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (four probe method) & Hall coefficient. (8 Lectures)

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation) (4 Lectures)

- [01] Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- [02] Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- [03] Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- [04] Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- [05] Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- [06] Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- [07] Solid State Physics, M.A. Wahab, 2011, Narosa Publications

- [08] Solid State Physics S. O. Pillai (New Age Publication)
- [09] Solid State Physics- R.K.Puri &V.K. Babbar (S.Chand Publication)2013
- [10] Lasers and Non linear Optics –B.B.Laud-Wiley Eastern.
- [11] LASERS: Fundamentals and Applications Thyagarajan and Ghatak (McMillanIndia) 2012

PHYSICS PRACTICAL-C XII LAB

20 Classes (2 hr duration)

- 1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To measure the Magnetic susceptibility of Solids.
- 3. To determine the Coupling Coefficient of a Piezoelectric crystal.
- 4. To measure the Dielectric Constant of a dielectric Materials with frequency
- 5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- 6. To determine the refractive index of a dielectric layer using SPR
- 7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
- 9. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150°C) and to determine its band gap.
- 10. To determine the Hall coefficient of a semiconductor sample.
- 11. Half adder, Full adder Circuits.
- 12. Variation of magnetic field strength in a Solenoid.
- 13. To study characteristics of BJT.
- 14. To verify and study Logic Gates.

Reference Books

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11 th Ed., 2011, Kitab Mahal [04] Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India.

Semester VI

PHYSICS-C XIII: ELECTROMAGNETIC THEORY

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Maxwell Equations: Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density. (06 Lectures)

IInit-II

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance.

Propagation through conducting media, relaxation time, skin depth. Electrical conductivity of

ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere. (06 Lectures)

Unit-III

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases,

Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence)

Optical Fibres:- Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).(14 Lectures)

Unit-IV

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light. (14 Lectures)

Reference Books:

- [01] Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- [02] Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
- [03] Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- [04] Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
- [05] Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- [06] Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
- [07] Electricity and Magnetism --- D C Tayal (Himalaya Publication)2014
- [08] Introduction to Electrodynamics-A.Z.Capri & P.V.Panat (Alpha Science) 2002
- [09] Optics E.Hecht, (Pearson India)

Additional Books for Reference

- [01] Electromagnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H.Freeman & Co.
- [02] Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- [03] Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press.
- [04] Electromagnetic Theory-A. Murthy (S. Chand Publication)2014
- [05] Classical Electrodynamics, J. D. Jackson (Wiley India)

PHYSICS PRACTICAL-C XIII LAB 20 Classes (2hr duration)

- 1. To verify the law of Malus for plane polarized light.
- 2. To determine the specific rotation of sugar solution using Polarimeter.
- 3. To analyze elliptically polarized Light by using a Babinet's compensator.
- 4. To study dependence of radiation on angle for a simple Dipole antenna.
- 5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.
- 6. To study the reflection, refraction of microwaves
- 7. To study Polarization and double slit interference in microwaves.
- 8. To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.
- 9.To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
- 10. To study the polarization of light by reflection and determine the polarizing angle for air-

glass interface.

- 11. To verify the Stefan's law of radiation and to determine Stefan's constant.
- 12. To determine the Boltzmann constant using V-I characteristics of PN junction diode.

Reference Books

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11 th Ed., 2011, Kitab Mahal [04] Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

04] Electromagnetic Field Theory for Engineers & Thysicists, G. Ecimer, 2010, Springer

PHYSICS-C XIV: STATISTICAL MECHANICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Classical Statistics: Macrostate & Microstate, Elementary Concept of Ensemble, Microcanonical, Canonical and grand canonical ensemble. Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function (07 Lectures)

Unit-II

Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature. (07 Lectures)

Unit-III

Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law.(13 Lectures)

Unit-IV

Quantum Statistics: Identical particles, macrostates and micro states. Fermions and Bosons, Bose Einstein distribution function and Fermi-Dirac Distribution function. Bose-Einstein Condensation, Bose deviation from Planck's law, Effect of temperature on F-D distribution function, degenarate Fermi Gas, Density of States, Fermi energy. (13 Lectures)

Reference Books:

- [01] Statistical Mechanics-R.K.Pathria & Paul D. Beale (Academic Press) 3rd Edition (2011)
- [02] Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill
- [03] Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall
- [04] Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- [05] Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- [06] An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press.
- [07] An introduction to Equilibrium Statistical Mechanics: Palash Das (I.K.International Publication) 2012
- [08] Statistical Physics -- F. Mandl (CBS) 2012
- [09] Statistical Physics of Particles-M. Kardar (CUP 2007)

PHYSICS PRACTICAL-C XIV LAB

20 Classes (2hr duration)

Use C/C++/Scilab for solving the problems based on Statistical Mechanics like

- 1.Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.
- 2.Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases
- 3. Plot Maxwell-Boltzmann distribution function versus temperature.
- 4. Plot Fermi-Dirac distribution function versus temperature.
- 5. Plot Bose-Einstein distribution function versus temperature.

Reference Books:

- [01] Elementary Numerical Analysis, K.E.Atkinson, 3 rd Edn. 2007, Wiley India Edition
- [02] Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- [03] Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- [04] Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- [05] Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- [06] Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- [07] Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub., ISBN: 978-6133459274

PHYSICS-DSE (Discipline Specific Elective): (4 papers including the Project) DSE-1 to DSE-4 (6 Credits each)

CLASSICAL DYNAMICS

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

Unit-I

Classical Mechanics of Point Particles: Generalised coordinates and velocities. Hamilton's Principle, Lagrangian and Euler-Lagrange equations. Applications to simple systems such as coupled oscillators. Canonical momenta & Hamiltonian. Hamilton's equations of motion.(15 Lectures)

Unit-II

Applications: Hamiltonian for a harmonic oscillator, particle in a central force field. Motion of charged particles in external electric and magnetic fields. (10 Lectures)

Unit-III

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Spacetime diagrams. Time-dilation, length contraction & twin paradox. (12 Lectures)

Unit-IV

Four-vectors: space-like, time-like & light-like. Four-velocity and acceleration. Metric and

alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. (13 Lectures)

Reference Books:

- [01] Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
- [02] Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
- [03] Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.
- [04] Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press
- [05] Classical Mechanics-J. C.Upadhyay (Himalaya Publication) 2014
- [06] Classical Dynamics of Particles and Systems S. T. Thornton (Cengage Learning) 2012
- [07] Introduction to Classical Mechanics-R. K. Takwale, S.Puranik-(Tata Mc Graw Hill)
- [08] Classical Mechanics-M. Das, P.K.Jena, M. Bhuyan, R.N.Mishra (Srikrishna Prakashan)

PHYSICS-DSE: Nuclear and Particle Physics (Credits: Theory-05, Tutorials-01)

Theory: 50 Classes (1hr duration)

Unit-I

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model.(12 Lectures)

Unit-II

Radioactivity decay:(a) Alpha decay: basics of α -decay processes, theory of α - emission, Gamow factor, Geiger Nuttall law. (b) β -decay: energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis. (c) Elementary idea of Gamma decay.

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value,

(13 Lectures)

Unit-III

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

Particle Accelerators: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.(15 Lectures)

Unit-IV

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm. Elementary ideas of quarks and gluons.(10 Lectures)

- [01] Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- [02] Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
- [03] Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- [04] Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- [05] Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (IOP-Institute of Physics Publishing, 2004).
- [06] Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991)
- [07] Atomic and Nuclear Physics -A. B. Gupta, Dipak Ghosh. (Books and Allied Publishers)

- [08] Physics of Atoms and Molecules Bransden (Pearson India) 2003
- [09] Subatomic Physics Henley and Gracia (World Scientific) 2012
- [10] Introduction to Nuclear and Particle Physics-A.Das and T.Ferbel (World Scientific)

[11] Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

PHYSICS-DSE: Nano Materials and Applications

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

Unit-I

Nanoscale Systems: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.(10 Lectures)

Unit-II

Synthesis Of Nanostructure Materials: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.(15 Lectures)

Unit-III

Characterization: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy. Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron devices (no derivation). CNT based transistors. (15 Lectures)

Unit-IV

Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).(10 Lectures)

Reference books:

- [01] C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- [02] S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- [03] K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- [04] Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- [05] M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).
- [06] Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).
- [07] Nanotechnology- Rakesh Rathi (S Chand & Company, New Delhi)

Skill Enhancement Course RENEWABLE ENERGY AND ENERGY HARVESTING (Credits: 02) Theory: 20 Classes (1hr duration)

The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible

Unit-I

Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in

Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity. (05 Lectures)

Unit-II

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems. **(05 Lectures)**

Unit-III

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.

Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices.

Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass. (05 Lectures)

Unit-IV

Geothermal Energy: Geothermal Resources, Geothermal Technologies.

Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources. **(05 Lectures)**

Reference Books:

- [01] Non-conventional energy sources G.D Rai Khanna Publishers, New Delhi
- [02] Solar energy M P Agarwal S Chand and Co. Ltd.
- [03] Solar energy Suhas P Sukhative Tata McGraw Hill Publishing Company Ltd.
- [04] Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
- [05] Dr. P Jayakumar, Solar Energy: Resource Assesment Handbook, 2009
- [06] J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).
- [07] http://en.wikipedia.org/wiki/Renewable_energy

Generic Elective Papers (GE) (Minor-Physics) (any two) for other Departments/Disciplines: (Credit: 06 each)

GE: MECHANICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. (2 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (2 Lectures)

Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. (4 Lectures)

Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. (2 Lectures)

UNIT-II

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (**3 Lectures**)

Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion

is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS). Weightlessness. Physiological effects on astronauts.

(7Lectures)

UNIT-III

Elasticity: Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method. (8 **Lectures**)

UNIT-IV

Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. (6 Lectures)

Special Theory of Relativity: Constancy of speed of light. Postulates of Special Theory of Relativity. Length contraction. Time dilation. Relativistic addition of velocities. **(6 Lectures)**

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate

Reference Books:

- [01] University Physics. F.W. Sears, M.W. Zemansky and H.D. Young, 13/e, 1986. Addison-Wesley
- [02] Mechanics Berkeley Physics, Vol..1: Charles Kittel, et. al. 2007, Tata McGraw-Hill.
- [03] Physics Resnick, Halliday & Walker 9/e, 2010, Wiley
- [04] University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- [05] Properties of Matter D.S. Mathur (S.Chand publication) 2013
- [06] Mechanics- D.C. Tayal (Himalaya Publication) 2013
- [07] Classical Dynamics of Particles and Systems –S. T. Thornton (Cengage Learning) 2012
- [08] Analytical Mechanics-Fowles (Cengage Learnings) 2014
- [09] Classical Mechanics-M.Das, P.K.Jena, M.Bhuyan and R.N.Mishra (Srikrishna Publication)

PHYSICS LAB: GE LAB: MECHANICS 20 Classes (2hr duration)

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
- 2. To determine the Height of a Building using a Sextant.
- 3. To determine the Moment of Inertia of a Flywheel.
- 4. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 5. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 6. To determine the Elastic Constants of a Wire by Searle's method.
- 7. To determine g by Bar Pendulum.
- 8. To determine g by Kater's Pendulum.
- 9. To study the Motion of a Spring and calculate (a) Spring Constant, (b) g.

Reference Books:

- [01] Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- [03] A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

GE: ELECTRICITY, MAGNETISM AND EMT

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Vector Analysis: Scalar and Vector product, gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). **(8 Lectures)**

UNIT-II

Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. (12 Lectures)

UNIT-III

Magnetism:

Magnetostatics: Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferromagnetic materials. (6 Lectures)

Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field. (4 Lectures)

IINIT-IV

Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. (10 Lectures)

Reference Books:

- [01] Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
- [02] Electricity & Magnetism, J.H. Fewkes & J.Yarwood. Vol. I, 1991, Oxford Univ. Press
- [03] Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing House.
- [04] University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- [05] D.J.Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.
- [06] Electricity and Magnetism- K.K Tewari (S. Chand Higher Academics)2013

GE LAB: ELECTRICITY, MAGNETISM AND EMT 20 Classes (2hr duration)

- 1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
- 2. Ballistic Galvanometer:
- (i) Measurement of charge and current sensitivity
- (ii) Measurement of CDR
- (iii) Determine a high resistance by Leakage Method
- (iv) To determine Self Inductance of a Coil by Rayleigh's Method.
- 3. To compare capacitances using De'Sauty's bridge.
- 4. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx)

- 5. To study the Characteristics of a Series RC Circuit.
- 6. To study a series LCR circuit LCR circuit and determine its (a) Resonant frequency, (b) Quality factor
- 7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q
- 8. To determine a Low Resistance by Carey Foster's Bridge.
- 9. To verify the Thevenin and Norton theorems
- 10. To verify the Superposition, and Maximum Power Transfer Theorems

Reference Books

- [01] Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- [02] Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- [03] A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed.2011, Kitab Mahal

B.Sc. PHYSICS Honours Syllabus Under CHOICE BASED CREDIT SYSTEM

1/2 semester :- 2015-2016 onwards

3/4 semester :- 2016-2017 onwards

5/6 semester :- 2017-2018 onwards

P.G. Department of Physics Khallikote University Berhampur.

Course Structure (Physics-Major) Details of courses under B.Sc. (Honors)

*Credits Course Theory + Tutorial Theory+ Practical -----I. Core Course (14 Papers) 14X4 = 5614X5=70**Core Course Practical / Tutorial*** (14 Papers) 14X2=28 14X1=14 **II. Elective Course** (8 Papers) A.1. Discipline Specific Elective 4X4=164X5 = 20(4 Papers) A.2. Discipline Specific Elective Practical/Tutorial* 4X1=44 X 2=8 (4 Papers) B.1. Generic Elective/ Interdisciplinary 4X4=164X5=20(4 Papers) B.2. Generic Elective Practical/ Tutorial* 4 X 2=8 4X1=4(4 Papers) • Optional Dissertation or project work in place of one Discipline Specific Elective paper (6 credits) in 6th Semester **III. Ability Enhancement Courses** 1. Ability Enhancement Compulsory (2 Papers of 2 credit each) $2 \times 2 = 4$ $2 \times 2 = 4$ **Environmental Science** English/MIL Communication 2. Ability Enhancement Elective (Skill Based) (Minimum 2) $2 \times 2 = 4$ $2 \times 2 = 4$ (2 Papers of 2 credit each) **Total credit** 140 140

Institute should evolve a system/policy about ECA/ General Interest/Hobby/Sports/NCC/NSS/related courses on its own.

^{*} wherever there is a practical there will be no tutorial and vice-versa

Mark Distribution

Core Course: 14x100=1400

DSE: 3x100=300 **Project**: =100 **GE-I**: 2x100=200**GE-II**: 2x100=200

Ability Enhancement (Compulsory): 2x50=100

Ability Enhancement (Elective, Skill Based): 2x50=100

Total Mark=2400, Total no of Papers=26

Subjects with Practical:

Theory-75 Marks, Practical-25 Marks

Mid Semester Theory-**15** Marks, End Semester Theory-**60** Marks There is no Practical Exam. in Mid Semester.

Subjects without Practical: 100 Marks

Mid Semester-20 Marks, End Semester-80 Marks

Each Theory class is of 1hr. duration and each practical class is of 2hrs. duration.

Sem	CORE COURESE 14	Ability Enhancement Compulsory Course (AECC) (2)	Ability Enhancement Elective Course (AEEC) (2) (Skill Based)	Elective: Discipline Specific DSE (4)	Elective: Generic (GE) (4)
I	Mathematical Physics-I (4+2) Mechanics (4+2)	M.I.L/Alt. English	(OKIII Buseu)		GE-1 Mathematics-I
II	Electricity& Magnetism(4+2) Waves and Optics (4 + 2)	Environmental Science			GE-2 Chemistry-I
III	Mathematical Physics—II (4 +2) Thermal Physics (4 + 2) Digital Systems and Applications (4 + 2)		SEC -1 Communicative English and English Writing Skill		GE-3 Mathematics-II
IV	Mathematical Physics–III (4+2) Elements of Modern Physics (4+2) Analog Systems & Applications (4+2)		SEC -2 Subject specific Skill: Basic Instrumentation Skills		GE-4 Chemistry-II
V	Quantum Mechanics and Applications (4+ 2) Solid State Physics (4 + 2)			DSE-1 Classical Dynamics (Compulsory) DSE-2 Nuclear and Particle Physics (Compulsory)	
VI	Electromagnetic Theory (4+2) Statistical Mechanics (4 + 2)			DSE-3 Nano Materials and Applications DSE-4 (Project)	

SEMESTER	COURSE OPTED	COURSE NAME	Credits
I	Ability Enhancement Compulsory	English/MIL communications/	2
4 Papers			
350 Marks	Course-I	Environmental Science	
	Core course-I	Mathematical Physics-I	4
	Core course-II	Mechanics	4
	Core Course-II Practical/Tutorial	PRACTICAL	4
	Generic Elective -1	GE-1	4/5
	Generic Elective -1 Practical/Tutorial		2/1
II	Ability Enhancement Compulsory	English/MIL communications/	2
4 Papers	Course-II	Environmental Science	
350 Marks	Core course-III	Electricity and Magnetism	4
	Core course-IV	Waves and Optics	4
	Core Course-IV Practical/Tutorial	PRACTICAL	4
	Generic Elective -2	GE-2	4/5
	Generic Elective -2 Practical/Tutorial		2/1
III	Core course-V	Mathematical Physics-II	4
	Core course-VI	Thermal Physics	4
(450 Marks)	Core Course-VI Practical/Tutorial	PRACTICAL	4
(== = = ====)	Core course-VII	Digital Systems and Applications	4
	Core Course-VII Practical/Tutorial	Digital Systems & Applications	2
		Lab	
	Skill Enhancement Course -1	SEC-1	2
	Generic Elective -3	GE-3	4/5
	Generic Elective -3 Practical/Tutorial		2/1
IV	Core course-VIII	Mathematical Physics III	4
5 Papers	Core Course-VII Practical/Tutorial	Mathematical Physics-III Lab	2
	Core course-IX	Elements of Modern Physics	4
(450 Marks)	Core Course-IX Practical/Tutorial	Elements of Modern Physics Lab	2
(Core course-X	Analog Systems and Applications	4
	Core Course-XPractical/Tutorial	Analog Systems & Applications	2
		Lab	
	Skill Enhancement Course -2	SEC -2	2
	Generic Elective -4	GE-4	4/5
	Generic Elective -4 Practical/Tutorial		2/1
V	Core course-XI	Quantum Mechanics &	4
4 Papers		Applications	
F	Core Course-XI Practical/Tutorial	Quantum Mechanics Lab	2
(400 Marks)	Core course-XII	Solid State Physics	4
(-001/141110)	Core Course-XII Practical/Tutorial	Solid State Physics Lab	2
	Discipline Specific Elective -1	DSE-1	4/5
	Discipline Specific Elective -1	DSE-1 Practical/Tutorial	2/1
	o.po opoomio =100ti vo 1	: : :	- / -

	Practical/Tutorial		
	Discipline Specific Elective -2	DSE-2	4/5
	Discipline Specific Elective- 2 Practical/Tutorial	DSE-2 Practical/Tutorial	2/1
VI	Core course-XIII	Electro-magnetic Theory	4
4 Papers	Core Course-XIII Practical/Tutorial	Electro-magnetic Theory Lab	2
_	Core course-XIV	Statistical Mechanics	4
(400 Marks)	Core Course-XIV Practical/Tutorial	Statistical Mechanics Lab	2
	Discipline Specific Elective3	DSE-3	4/5
	Discipline Specific Elective -3 Practical/Tutorial	DSE-3 Practical/Tutorial	2/1
	Discipline Specific Elective-4	DSE-4 (Project: Report+Viva)	6
Total Credits			140

Core Papers (C): (Credit:06 each, 04 Theory and 02 Practical)

- 1. Mathematical Physics-I (4 + 2)
- 2. Mechanics (4 + 2)
- 3. Electricity and Magnetism (4 + 2)
- 4. Waves and Optics (4 + 2)
- 5. Mathematical Physics–II (4 + 2)
- 6. Thermal Physics (4 + 2)
- 7. Digital Systems and Applications (4 + 2)
- 8. Mathematical Physics III (4 + 2)
- 9. Elements of Modern Physics (4 + 2)
- 10. Analog Systems and Applications (4 + 2)
- 11. Quantum Mechanics and Applications (4 + 2)
- 12. Solid State Physics (4 + 2)
- 13. Electromagnetic Theory (4 + 2)
- 14. Statistical Mechanics (4 + 2)

Discipline Specific Elective Papers: (Credit: 06 each) (4 papers) DSE 1 - 4

- 1. Classical Dynamics (5) + Tutorials (1) (Compulsory)
- 2. Nuclear and Particle Physics (5) + Tutorials (1) (Compulsory)
- 3. Project/Dissertation (Compulsory)
- 4. Computational Physics (**Elective**)
- 5. Nano Materials and Applications (5) + Tutorials (1) (**Elective**)
- 6. Biophysics (5) + Tutorials (1) (**Elective**)

Generic Elective/Interdisciplinary(4 papers-Two papers from two disciplines)- GE 1- GE 4

- 1. Mathematics (5) + Tut (1) (Compulsory)
- 2. Chemistry Th. (4) + Lab (2)
- 3. Economics (5) + Tut (1)
- 4. Computer Science Th.(4) + Lab
- (2) 5.Geology Th. (4) + Lab (2)

OR

Vocational Course (24 credits)

Skill Enhancement Courses (2 papers) (Credit: 02 each)- SEC 1 to SEC 2

- 1. Communicative English and English Writing Skill (Compulsory)
- 2. Basic Instrumentation Skills
- 3. Renewable Energy and Energy harvesting
- 4. Applied Optics

Generic Elective Papers (GE) (Minor-Physics) (any two) for other Departments/Disciplines: (Credit: 06 each)

- 1. Mechanics (4) + Lab (2)
- 2. Electricity and Magnetism (4) + Lab (2)
- 3. Thermal Physics (4) + Lab(2)
- 4. Waves and Optics (4) + Lab (2)
- 5. Elements of Modern Physics (4) + Lab (2)
- 6. Solid State Physics (4) + Lab (2)

Important:

- 1.Each University/Institute should provide a brief write-up about each paper outlining the salient features, utility, learning objectives and prerequisites.
- 2. University/Institute can add/delete some experiments of similar nature in the Laboratory papers.
- 3. The size of the practical group for practical papers is recommended to be 12-15 students.
- 4. University/Institute can add to the list of reference books given at the end of each paper.

CORE COURSE (HONOURS IN PHYSICS)

Semester I

PHYSICS-C I: MATHEMATICAL PHYSICS-I

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

UNIT-I

Vector Calculus:

Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields. (5

Lectures)

Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities, Gradient, divergence, curl and Laplacian in spherical and cylindrical coordinates.

(8

Lectures)

UNIT-II

Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs). (12

Lectures)

Calculus:

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. (2 Lectures)

Dirac Delta function and its properties:

Definition of Dirac delta function. Properties of Dirac delta function. (2 Lectures)

UNIT-III

Orthogonal Curvilinear Coordinates:

Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. Comparison of velocity and acceleration in cylindrical and spherical coordinate system.

(6

Lectures)

Matrices:

Different types of matrices, algebra of matrices, Determinant of a matrix, Inverse of a matrix, Rank, Orthogonal, Unitary and similarity transformations, Solutions of linear equations, eigen value, eigen vectors, Diagonalisation of a matrix. (5

Lectures)

Reference Books:

- Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013,7th Edn., Elsevier.
- An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning.Differential Equations, George F. Simmons, 2007, McGraw Hill.
- Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book
- Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning
- Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press
- Mathematical Physics and Special Relativity --M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) 2 delition 2009
- Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- Mathematical Physics Satya Prakash.
- Mathematical Physics H.K.Dass.
- Mathematical Physics-Goswami (Cengage Learning) 2014
- Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006

-

PHYSICS LAB- C I LAB: 20 Classes (2 hr duration)

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- The course will consist of lectures (both theory and practical) in the Lab
- Evaluation done not on the programming but on the basis of formulating the problem
- Aim at teaching students to construct the computational problem to be solved
- Students can use any one operating system Linux or Microsoft Windows

Topics	Description with Applications
Introduction and Overview	Computer architecture and organization, memory and
	Input/output devices.
Basics of scientific computing	Binary and decimal arithmetic, Floating point numbers,
	algorithms, Sequence, Selection and Repetition, single
	and double precision arithmetic, underflow &overflow
	emphasize the importance of making equations in terms
	of dimensionless variables, Iterative methods.
Errors and error Analysis	Truncation and round off errors, Absolute and relative
	errors, Floating point computations.
Review of C & C++ Programming	Introduction to Programming, constants, variables and
fundamentals	data types, operators and Expressions, I/O statements,
	scanf and printf, c in and c out, Manipulators for data
	formatting, Control statements (decision making and
	looping statements) (Ifstatement. Ifelse Statement.
	Goto Statement. Switch Statement. Unconditional and
	Conditional Looping. While Loop. Do-While Loop.
	For Loop, Break and Continue Statements, Nested Loops, Arrays
	(1D and 2D) and Strings, User defined functions, Structures and
	Unions, Idea of Classes and Objects.
Programs:	Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search
Random number generation	Area of circle, area of square, volume of sphere, value of π .

Any other experiments as and when they are set up.

Referred Books:

- Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- Schaum's Outline of Programming with C++. J. Hubbard, 2000, McGraw---Hill Pub.
- Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal, 3rd Edn. 2007, Cambridge University Press.
- A first course in Numerical Methods, U.M. Ascher & C. Greif, 2012, PHI Learning.
- Elementary Numerical Analysis, K.E. Atkinson, 3 r d Edn., 2 0 0 7, Wiley India Edition.
- Numerical Methods for Scientists & Engineers, R.W. Hamming, 1973, Courier Dover Pub.
- An Introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press

PHYSICS-C II: MECHANICS

(Credits: Theory-04, Practicals- 02) Theory: 40 Classes (1hr duration)

UNIT-I

Rotational Dynamics: Motion under central force, Acceleration in Polar Coordinates, Centre of Mass and Laboratory frames. Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Bar and Katers Pendulum- Correction. (10 Lectures)

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. (3 Lectures)

UNIT-II

Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire.

(3 Lectures)

Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube. (2 Lectures)

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere.

3 Lectures)

Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). Physiological effects on astronauts. (5 Lectures)

UNIT-III

Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. (5 Lectures)

Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Massenergy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. (8 Lectures)

Reference Books:

- An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.
- Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.
- Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.
- Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

Additional Books for Reference

- Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000
- University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A.Serway, 2010, Cengage Learning
- Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.
- Mechanics J. C. Slater and N. H. Frank (McGraw-Hill)

PHYSICS LAB-C II LAB 20 Classes (2hr duration)

,

- 1. To study the random error in observations.
- 2. To determine the height of a building using a Sextant.
- 3. To study the Motion of Spring and calculate (a) Spring constant, (b) **g** and (c) Modulus of rigidity.
- 4. To determine the Moment of Inertia of a Flywheel.
- 5. To determine **g** and velocity for a freely falling body using Digital Timing Technique
- 6. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 7. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 8. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 9. To determine the elastic Constants of a wire by Searle's method.
- 10. To determine the value of g using Bar Pendulum.
- 11. To determine the value of g using Kater's Pendulum.
- 12. To determine the Young's Modulus by single cantilever/ Double Cantilever.
- 13. To Study the the laws of transeverse vibration of strings by Sonometer.
- 14. To Callibrate the set of weights.

Reference Books

- Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, AsiaPublishing House
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.

Semester II

PHYSICS-C III: ELECTRICITY AND

MAGNETISM (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Electric Field and Electric Potential

Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. (3 Lectures)

Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. (3 Lectures)

Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. (4 Lectures)

Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector **D**. Relations between **E**, **P** and **D**. Gauss' Law in dielectrics. (4 Lectures)

UNIT-II

Magnetic Field: Magnetic force between current elements and definition of Magnetic Field **B**. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of **B**: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Ballistic Galvanometer: Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. (12 Lectures)

UNIT-III

Magnetic Properties of Matter: Magnetization vector (**M**). Magnetic Intensity (**H**). Magnetic Susceptibility and permeability. Relation between **B**, **H**, **M**. Ferromagnetism. B-H curve and hysteresis. (5 Lectures)

Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. (3 Lectures)

Electrical Circuits: AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit. (6 Lectures)

Reference Books:

- Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education
- Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.
- Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.
- Electricity and Magnetism, J.H.Fewkes & J.Yarwood, Vol. I, 1991, Oxford Univ. Press.

PHYSICS LAB-C III LAB 20 Classes (2hr duration)

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the characteristics of a series RC Circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- 7. To verify the Thevenin and Norton theorems.
- 8. To verify the Superposition, and Maximum power transfer theorems.
- 9. To determine self inductance of a coil by Anderson's bridge.
- 10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- 11. To study the response curve of a parallel LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q.
- 12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
- 13. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 14. To determine self-inductance of a coil by Rayleigh's method.
- 15. To determine the mutual inductance of two coils by Absolute method.
- 16. To determine the low resistance of a wire using Potentiometer.
- 17. To determine the low resistance of a wire using Carey-fosters bridge.
- 18. To compare Capacitances by De Sauty's Bridge.
- 19. To determine the resistance of Ballistic Galvanometer by Half Deflection method.
- 20. To determine the figure of merit of a Ballistic Galvanometer.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal 14
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

PHYSICS-C IV: WAVES AND OPTICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Geometrical optics: Fermat's principle, reflection and refraction at plane interface, Matrix formulation of geometrical Optics. Idea of dispersion. Application to thick lense, Ramsden and Huygens eyepiece. (4 Lectures)

Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. (**4 Lectures**)

Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. Superposition of N harmonic waves.

(2 Lectures)

Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. (3 Lectures)

UNIT-II

Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index. (8 Lectures)

Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry-Perot interferometer. (5 Lectures)

UNIT-III

Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating. (**7 Lectures**)

Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.

(7 Lectures)

Reference Books

- Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- Optics Brijlal & Subramaniam- (S. Chand Publication) 2014.
- Geometrical and Physical Optics R.S. Longhurst, Orient Blackswan, 01-Jan-1986
- Vibrations and Waves -- A. P. French, (CBS) Indian print 2003
- Optics, E. Hecht (PearsonIndia)

PHYSICS LAB- C IV LAB 20 Classes (2hr duration)

1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 – T law.

- 2. To investigate the motion of coupled oscillators.
- 3. To study Lissajous Figures.
- 4. Familiarization with: Schuster's focusing; determination of angle of prism.
- 5. To determine refractive index of the Material of a prism using sodium source.
- 6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
- 7. To determine the wavelength of sodium source using Michelson's interferometer.
- 8. To determine wavelength of sodium light using Fresnel Biprism.
- 9. To determine wavelength of sodium light using Newton's Rings.
- 10.To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
- 11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 12. To determine dispersive power and resolving power of a plane diffraction grating.
- 13. To determine the Dispersive power and Cauchys Constant using Hg-Source.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani

Semester III

PHYSICS-C V: MATHEMATICAL PHYSICS-II

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity.

(10 Lectures)

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). (4 Lectures)

UNIT-II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance, Frobenius method and its applications to differential equations: Legendre & Hermite Differential Equations. Properties of Legendre & Hermite Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Associated Legendre polynomials and spherical harmonics. (12 Lectures)

UNIT-III

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. (4 Lectures)

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Conducting and dielectric sphere in an external uniform electric field. Wave equation and its solution for vibrational modes of a stretched string. (10 Lectures)

Reference Books:

- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.

- Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books
- Mathematical Physics and Special Relativity --M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) 2nd Edition 2009
- Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- Mathematical Physics-Goswami (CENGAGE Learning) 2014
- Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006
- Mathematics for Physicists, P. Dennery and A. Krzywicki Dover)
- Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.

PHYSICS LAB-C V LAB 20 Classes (2hr duration)

The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the problem.

Topics	Description with Applications
Introduction to Numerical	Introduction to Scilab, Advantages and disadvantages, Scilab
computation software Scilab	environment, Command window, Figure window, Edit
	window, Variables and arrays, Initialising variables in Scilab,
	Multidimensionalarrays, Subarray, Special values,
	Displaying output data, data file, Scalar and array operations,
	Hierarchy of operations, Built in Scilab functions,
	Introduction to plotting, 2D and 3D plotting (2), Branching
	Statements and program design, Relational & logical
	operators, the while loop, for loop, details of loop operations,
	break & continue statements, nested loops, logical arrays and
	vectorization (2) User defined functions, Introduction to
	Scilab functions, Variable passing in Scilab, optional
	arguments, preserving data between calls to a function,
	Complex and Character data, string function,
	Multidimensional arrays (2) an introduction to Scilab file
	processing, file opening and closing, Binary I/o functions,
	comparing binary and formatted functions, Numerical
	methods and developing the skills of writing a program (2).
Curve fitting, Least square fit,	Ohms law to calculate R, Hooke's law to calculate spring
Goodness of fit, standard	constant
deviation	
Solution of Linear system of	Solution of mesh equations of electric circuits (3 meshes)
equations by Gauss elimination	Solution of coupled spring mass systems (3 masses)
method and Gauss Seidal	

method. Diagonalization of	
matrices, Inverse of a matrix,	
Eigen vectors, eigen values	
problems	
Solution of ODE	First order differential equation
First order Differential equation	Radioactive decay
Euler, modified Euler and	• Current in RC, LC circuits with DC source
Runge-Kuttasecond order	• Newton's law of cooling
methods	Classical equations of motion
Second order differential	-
equation.	Second order Differential Equation
Fixed difference method	• Harmonic oscillator (no friction)
	Damped Harmonic oscillator
	Over damped
	Critical damped
	Oscillatory
	Forced Harmonic oscillator
	• Transient and
	Steady state solution
	Apply above to LCR circuits also

Reference Books:

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J.20 Bence, 3rd ed., 2006, Cambridge University Press
- Complex Variables, A.S. Fokas & M.J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A.V. Wouwer, P. Saucez, C.V. Fernández. 2014 Springer
- Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C VI: THERMAL PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration) (Include related problems for each topic)

UNIT-I

Introduction to Thermodynamics

Recapitulation of Zeroth and First law of thermodynamics:

Second Law of Thermodynamics: Reversible and Irreversible process with examples.

Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. (7 Lectures)

Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. (7 Lectures)

UNIT-II

Thermodynamic Potentials: Extensive and Intensive Thermodynamic Variables. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and equations (6 Lectures)

Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) Tds Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. (6 Lectures)

UNIT-III

Kinetic Theory of Gases

Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. **(4 Lectures)**

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. (4 Lectures)

Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. p-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. **(6 Lectures)**

Reference Books:

- Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
- Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.
- Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press
- Heat and Thermal Physics-Brijlal & Subramaiam (S.Chand Publication) 2014
- Thermal Physics-- C. Kittel and H. Kroemer (McMillan Education India) 2010

PHYSICS LAB- C VI LAB

20 Classes (2hr duration)

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- 4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
- 5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).
- 6. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.
- 7. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.
- 8. To determine J by Caloriemeter.

Reference Books

- Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

PHYSICS-C VII: DIGITAL SYSTEMS AND

APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Integrated Circuits (Qualitative treatment only): Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs. (3 **Lectures**) **Digital Circuits**: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers. (5 **Lectures**)

Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. (5 Lectures)

UNIT-II

Introduction to CRO: Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. (3 Lectures)

Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.

(4 Lectures)

Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. (5 Lectures)

Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. (3 Lectures)

UNIT-III

Introduction to Computer Organization: Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map. (6 Lectures)

Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). (2 Lectures)

Counters(4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. (4 Lectures)

Reference Books:

• Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw

- Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning
- Logic circuit design, Shimon P. Vingron, 2012, Springer.
- Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall.
- Concept of Electronics: D.C. Tayal (Himalay Publication) 2011
- Electronics-V. K. Meheta (S. Chand Publication)2013
- The Art of Electronics, P. Horowitz and W. Hill, CUP

PHYSICS PRACTICAL-C VII LAB 20 Classes (2hr duration)

- 1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
- 2. To test a Diode and Transistor using a Multimeter.
- 3. To design a switch (NOT gate) using a transistor.
- 4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 5. To design a combinational logic system for a specified Truth Table.
- 6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
- 7. To minimize a given logic circuit.
- 8. Half Adder, Full Adder and 4-bit binary Adder.
- 9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
- 10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
- 11. To build JK Master-slave flip-flop using Flip-Flop ICs
- 12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- 13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
- 14. To design an astable multivibrator of given specifications using 555 Timer.
- 15. To design a monostable multivibrator of given specifications using 555 Timer.

Reference Books:

- Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.
- Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- Microprocessor Architecture Programming and applications with 8085, R.S. Goankar, 2002, Prentice Hall.
- Microprocessor 8085:Architecture, Programming and interfacing, A. Wadhwa, 2010, PHI Learning.

Semester IV

PHYSICS-VIII: MATHEMATICAL PHYSICS-III

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Complex Analysis: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application in solving Definite Integrals.

UNIT-II

Integrals Transforms:

Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations. (14 Lectures)

UNIT-III

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits. (12 Lectures)

Reference Books:

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press
- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.
- Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
 Complex Variables, A. S. Fokas & M. J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill

- First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett.
- Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- •Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- •Mathematical Physics-Goswami (Cengage Learning) 2014
- •Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006
- •Introduction to the theory of functions of a complex variable- E.T.Copson (Oxford) Univ. Press, 1970

PHYSICS PRACTICAL-C VIII LAB 20 Classes (2hr duration)

Scilab based simulations experiments based on Mathematical Physics problems like

1. Solve differential equations: $dy/dx = e^{-x}$ with y = 0 for x = 0 $dy/dx + e^{-x}y = x^2$ $d^2y/dt^2 + 2 dy/dt = -y$ $d^2y/dt^2 + e^{-t}dy/dt = -y$

2. Dirac Delta Function:

Evaluate _____ dx for σ =1,0.1, 0.01 and show it tends to 5

3. Fourier Series:

Program to sum

Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions:

Plot $P_n(x)$, $J_{\nu}(x)$ Show recursion relation

- 5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).
- 6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.
- 7. Evaluation of trigonometric functions e.g. $\sin \theta$, Given Bessel's function at N points find its value at an intermediate point. Complex analysis: Integrate $1/(x^2+2)$ numerically and check with computer integration.

8. Integral transform: FFT of e^{-x2}

Reference Books:

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press
- Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C IX: ELEMENTS OF MODERN PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Atomic Spectra and Models

Inadequacy of classical physics, Brief Review of Black body Radiation, Photoelectric effect, Compton effect, dual nature of radiation, wave nature of particles. Atomic spectra, Line spectra of hydrogen atom, Ritz Rydberg combination principle. Alpha Particle Scattering, Rutherford Scattering Formula, Rutherford Model of atom and its limitations, Bohr's model of H atom, explanation of atomic spectra, correction for finite mass of the nucleus, Bohr correspondence principle, limitations of Bohr model, discrete energy exchange by atom, Frank Hertz Expt. Sommerfeld's Modification of Bohr's Theory. (13 Lectures)

UNIT-II

Wave Particle Duality

de Broglie hypothesis, Experimental confirmation of matter wave, Davisson Germer Experiment, velocity of de Broglie wave, wave particle duality, Complementarity. Superposition of two waves, phase velocity and group velocity, wave packets, Gaussian Wave Packet, spatial distribution of wave packet, Localization of wave packet in time.

Time development of a wave Packet; Wave Particle Duality, Complementarity.

Heisenberg Uncertainty Principle ,Illustration of the Principle through thought Experiments of Gamma ray microscope and electron diffraction through a slit. Estimation of ground state energy of harmonic oscillator and hydrogen atom, non existence of electron in the nucleus. Uncertainty and Complementarities.

(13 Lectures)

UNIT-III

Nuclear Physics

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers.

Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.

Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions).

(14 Lectures)

Reference Books:

- Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan
- Modern Physics Bernstein, Fishbane and Gasiorowicz (Pearson India) 2010
- Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles -- R. Eisberg (Wiley India) 2012

Additional Books for Reference

- Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.
- Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edn, Tata McGraw-Hill Publishing Co. Ltd.
- Quantum Physics, Berkeley Physics, Vol.4. E.H. Wichman, 1971, Tata McGraw-Hill Co.
- Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub.
- Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill
- •Modern Physics-Serway (CENGAGE Learnings) 2014
- •Modern Physics ---Murugesan and Sivaprasad –(S. Chand Higher Academics)
- •Physics of Atoms and Molecules Bransden (Pearson India) 2003

PHYSICS PRACTICAL-C IX LAB

20 Classes (2hr duration)

- 1. Measurement of Planck's constant using black body radiation and photo-detector
- 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
- 3. To determine work function of material of filament of directly heated vacuumdiode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To show the tunneling effect in tunnel diode using I-V characteristics.
- 11. To determine the wavelength of laser source using diffraction of single slit.

- 12. To determine the wavelength of laser source using diffraction of double slits.
- 13. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal

PHYSICS-C X: ANALOG SYSTEMS AND APPLICATIONS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. (**4 Lectures**)

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode, (3) Solar Cell. (4 Lectures)

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. (5 Lectures)

Unit-II

Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers. **(6 Lectures)**

Coupled Amplifier: RC-coupled amplifier and its frequency response. (4 Lectures)

Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. (4 Lectures)

Unit-III

Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. (4 Lectures)

Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. (4 Lectures)

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. (5 Lectures)

Reference Books:

- Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn., 2009, PHI Learning
- Electronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India
- •Concept of Electronics: D.C.Tayal (Himalay Publication) 2011
- •Electronic devices :Circuits and Applications :W.D. Stanley Prentice Hall
- Electronics V. K. Meheta (S. Chand Publication) 2013
- •.Electronic Circuits :L.Schilling and Velove: 3rd Ed Mc Graw Hill
- Electronics-Raskhit & Chattopadhyay (New age International Publication)2011
- •Electricity and Electronic-D.C.Tayal (Himalaya Pub.)2011
- •Electronic devices and circuits –R.L. Boylstad (Pearson India) 2009

PHYSICS PRACTICAL-C X LAB 20 Classes (2hr duration)

- 1. To study V-I characteristics of PN junction diode, and Light emitting diode.
- 2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
- 4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 5. To study the various biasing configurations of BJT for normal class A operation.
- 6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
- 8. To design a Wien bridge oscillator for given frequency using an op-amp.
- 9. To design a phase shift oscillator of given specifications using BJT.
- 10. To study the Colpitt's oscillator.
- 11. To design a digital to analog converter (DAC) of given specifications.
- 12. To study the analog to digital convertor (ADC) IC.
- 13. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain
- 14. To design inverting amplifier using Op-amp (741,351) and study its frequency response

- 15. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
- 16. To study the zero-crossing detector and comparator
- 17. To add two dc voltages using Op-amp in inverting and non-inverting mode
- 18. To design a precision Differential amplifier of given I/O specification using Op-amp.
- 19. To investigate the use of an op-amp as an Integrator.
- 20. To investigate the use of an op-amp as a Differentiator.
- 21. To design a circuit to simulate the solution of a 1st/2nd order differential equation.

Reference Books:

- Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.
- Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.
- Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson

PHYSICS-C XI: QUANTUM MECHANICS AND APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr

duration) Unit-I

Schrodinger equation & the operators: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Hermitian operator, Eigen values and Eigen functions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. (8 Lectures)

Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigen values; expansion of an arbitrary wave function as a linear combination of energy eigen functions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wave function; Position-momentum uncertainty principle. (**6 Lectures**)

Unit-II

General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigen functions ground state, zero point energy & uncertainty principle. One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization;

Quantum dot as example; Quantum mechanical scattering and tunnelling in one dimensionacross a step potential & rectangular potential barrier. (14 Lectures)

Unit-III

Atoms in Electric & Magnetic Fields: Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton.

Atoms in External Magnetic Fields:- Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only). (12 Lectures)

Reference Books:

- A Text book of Quantum Mechanics, P. M.Mathews and K.Venkatesan, 2nd Ed., 2010, McGraw Hill
- Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer
- Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press
- Quantum Physics----S. Gasiorowicz (Wiley India) 2013
- Quantum Mechanics -J.L. Powell and B. Craseman (Narosa) 1988
- Introduction to Quantum Mechanics- M.Das, P.K.Jena, (SriKrishna Prakashan)
- Basic Quantum Mechanics –A.Ghatak (Mc Millan India) 2012
- •. Introduction to Quantum Mechanics R. Dicke and J. Wittke
- Quantum Mechanics- Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
- Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education
- Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer
- •Quantum Mechanics F. Mandl (CBS) 2013
- •Cohen-Tannoudji, B Diu and F Laloë, Quantum Mechanics (2 vols) Wiley-VCH 1977

PHYSICS PRACTICAL-C XI LAB 20 Classes (2hr duration)

Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:

Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \approx -13.6 eV. Take e = 3.795 (eVÅ)1/2, hc = 1973 (eVÅ) and m = 0.511x106 eV/c2.

2. Solve the s-wave radial Schrodinger equation for an atom:

where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take e = 3.795 (eVÅ)1/2, m = 0.511x106 eV/c2, and a = 3 Å, 5 Å, 7 Å. In these units $\hbar c = 1973$ (eVÅ). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass m: For the anharmonic oscillator potential

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose m=940 MeV/c2, k=100 MeV fm-2, b=0, 10, 30 MeV fm-3In these units, ch=197.3 MeV fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule:

Where μ is the reduced mass of the two-atom system for the Morse potential Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function. Take: m = 940x106eV/C2, D = 0.755501 eV, $\alpha = 1.44$, ro = 0.131349 Å

Laboratory based experiments:

- 5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
- 6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
- 7. To show the tunneling effect in tunnel diode using I-V characteristics.
- 8. Quantum efficiency of CCDs

Reference Books:

- Schaum's outline of Programming with C++. J.Hubbard, 2000,McGraw-- Hill Publication
- Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal., 3rd Edn., 2007, Cambridge University Press.
- An introduction to computational Physics, T.Pang, 2nd Edn., 2006, Cambridge Univ. Press
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer.
- Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & Co.
- Scilab Image Processing: L.M.Surhone.2010 Betascript Publishing ISBN:978-6133459274

PHYSICS-C XII: SOLID STATE PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Types of Lattices, Reciprocal Lattice. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. (8 Lectures)

Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T³ law (6 Lectures)

Unit-II

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia—and Paramagnetic Domains. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss. (6 Lectures) Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. (4 Lectures)

Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. (4 Lectures)

Unit-III

Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (04 probe method) & Hall coefficient. (8 Lectures)

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation) (4 Lectures)

Reference Books:

- Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- Solid State Physics, M.A. Wahab, 2011, Narosa Publications
- Solid State Physics S. O. Pillai (New Age Publication)
- •Solid State Physics- R.K.Puri &V.K. Babbar (S.Chand Publication)2013
- •Lasers and Non linear Optics –B.B.Laud-Wiley Eastern.
- •LASERS: Fundamentals and Applications Thyagarajan and Ghatak (McMillanIndia) 2012

PHYSICS PRACTICAL-C XII LAB

20 Classes (2 hr duration)

- 1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To measure the Magnetic susceptibility of Solids.
- 3. To determine the Coupling Coefficient of a Piezoelectric crystal.

- 4. To measure the Dielectric Constant of a dielectric Materials with frequency
- 5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- 6. To determine the refractive index of a dielectric layer using SPR
- 7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
- 9. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
- 10. To determine the Hall coefficient of a semiconductor sample.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India.

Semester VI

PHYSICS-C XIII: ELECTROMAGNETIC THEORY

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Maxwell Equations: Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density.

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. (**12 Lectures**)

Unit-II

Propagation through conducting media, relaxation time, skin depth. Electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere.

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases,

Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence)

Optical Fibres:- Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).

(14 Lectures)

Unit-III

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light.

Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half-shade polarimeter.

(14 Lectures)

Reference Books:

- Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
- Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
- Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
- Electricity and Magnetism --- D C Tayal (Himalaya Publication)2014
- Introduction to Electrodynamics-A.Z.Capri & P.V.Panat (Alpha Science) 2002
- Optics E.Hecht, (Pearson India)

Additional Books for Reference

- Electromagnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H.Freeman & Co.
- Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press
- Electromagnetic Theory-A. Murthy (S. Chand Publication)2014
- Classical Electrodynamics, J. D. Jackson (Wiley India)

PHYSICS PRACTICAL-C XIII LAB 20 Classes (2hr duration)

- 1. To verify the law of Malus for plane polarized light.
- 2. To determine the specific rotation of sugar solution using Polarimeter.
- 3. To analyze elliptically polarized Light by using a Babinet's compensator.
- 4. To study dependence of radiation on angle for a simple Dipole antenna.
- 5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil,

Xylene, etc.) by studying the diffraction through ultrasonic grating.

- 6. To study the reflection, refraction of microwaves
- 7. To study Polarization and double slit interference in microwaves.
- 8. To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.
- 9.To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
- 10.To study the polarization of light by reflection and determine the polarizing angle for airglass interface.
- 11. To verify the Stefan's law of radiation and to determine Stefan's constant.
- 12. To determine the Boltzmann constant using V-I characteristics of PN junction diode.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

PHYSICS-C XIV: STATISTICAL MECHANICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Classical Statistics: Macrostate & Microstate, Elementary Concept of Ensemble, Microcanonical, Canonical and grand canonical ensemble. Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature.

(14 Lectures)

Unit-II

Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law. (13 Lectures)

Unit-III

Quantum Statistics: Identical particles, macrostates and Bosons, Bose Einstein distribution function and Fermi-Dirac micro states. Fermions and Bosons, Distribution function. Bose-Einstein

Condensation, Bose deviation from Planck's law, Effect of temperature on F-D distribution function, degenerate Fermigas, Density of States, Fermi energy. (13 Lectures)

Reference Books:

- Statistical Mechanics-R.K.Pathria & Paul D. Beale (Academic Press) 3rd Edition (2011)
- Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill
- Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall
- Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press.
- An introduction to Equilibrium Statistical Mechanics: Palash Das (I.K.International Publication) 2012
- •Statistical Physics -- F. Mandl (CBS) 2012
- •Statistical Physics of Particles-M. Kardar (CUP 2007)

PHYSICS PRACTICAL-C XIV LAB

20 Classes (2hr duration)

Use C/C++/Scilab for solving the problems based on Statistical Mechanics like

- 1.Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.
- 2.Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases
- 3. Plot Maxwell-Boltzmann distribution function versus temperature.
- 4. Plot Fermi-Dirac distribution function versus temperature.
- 5. Plot Bose-Einstein distribution function versus temperature.

Reference Books:

- Elementary Numerical Analysis, K.E.Atkinson, 3 rd Edn. 2007, Wiley India Edition
- Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub., ISBN: 978-6133459274

PHYSICS-DSE (Discipline Specific Elective): (4 papers including the Project) DSE-1 to DSE-4 (6 Credits each)

CLASSICAL DYNAMICS

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

Unit-I

Classical Mechanics of Point Particles: Generalised coordinates and velocities. Hamilton's Principle, Lagrangian and Euler-Lagrange equations. Applications to simple systems such as coupled oscillators. Canonical momenta & Hamiltonian. Hamilton's equations of motion. Applications: Hamiltonian for a harmonic oscillator, particle in a central force field. Motion of charged particles in external electric and magnetic fields. (25 Lectures)

Unit-II

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Spacetime diagrams. Time-dilation, length contraction & twin paradox. Four-vectors: space-like, time-like & light-like. Four-velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. **(25 Lectures)**

Reference Books:

- Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
- Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
- Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.
- Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press
- •Classical Mechanics-J. C.Upadhyay (Himalaya Publication) 2014
- •Classical Dynamics of Particles and Systems S. T. Thornton (Cengage Learning) 2012
- •Introduction to Classical Mechanics-R. K. Takwale, S.Puranik-(Tata Mc Graw Hill)
- Classical Mechanics-M. Das, P.K.Jena, M. Bhuyan, R.N.Mishra (Srikrishna Prakashan)

PHYSICS-DSE: Nuclear and Particle Physics (Credits: Theory-05, Tutorials-01)

Theory: 50 Classes (1hr duration)

Unit-I

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model,

Radioactivity decay:(a) Alpha decay: basics of α -decay processes, theory of α - emission, Gamow factor, Geiger Nuttall law. (b) β -decay: energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis. (c) Elementary idea of Gamma decay.

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value,

(25 Lectures)

Unit-II

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

Particle Accelerators: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm. Elementary ideas of quarks and gluons.

(25 Lectures)

Reference Books:

- Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
- Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (IOP-Institute of Physics Publishing, 2004).
- Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991)
- Atomic and Nuclear Physics -A. B. Gupta, Dipak Ghosh. (Books and Allied Publishers)
- Physics of Atoms and Molecules Bransden (Pearson India) 2003
- •. Subatomic Physics Henley and Gracia (World Scientific) 2012
- •Introduction to Nuclear and Particle Physics-A.Das and T.Ferbel (World Scientific)
- •Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

COMPUTATIONAL PHYSICS

(Credits: Theory-05, Tutorials-01) Theory: 50 Classes (1hr duration)

The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- *Use of computer language as a tool in solving physics problems (applications)*
- Course will consist of hands on training on the Problem solving on Computers.

Unit-I

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. **Algorithms and Flowcharts:** Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal.

Scientific Programming: Some fundamental Linux Commands (Internal and External commands). Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. Fortran Statements: I/O Statements (unformatted/formatted), Executable and Non-Executable Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic. Examples from physics problems.

(25Lectures)

Unit-II

Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DOWHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:

- 1. Exercises on syntax on usage of FORTRAN
- 2. To print out all natural even/odd numbers between given limits.
- 3. To find maximum, minimum and range of a given set of numbers. 4.To find a set of prime numbers and Fibonacci series

(25 Lectures)

Reference Books:

- Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- Computer Programming in Fortran 77". V. Rajaraman (Publisher: PHI).
- Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co.
- Computational Physics: An Introduction, R. C. Verma, et al. New Age International Publishers, New Delhi(1999)
- A first course in Numerical Methods, U.M. Ascher and C. Greif, 2012, PHI Learning
- Elementary Numerical Analysis, K.E. Atkinson, 3 rd Edn., 2007, Wiley India Edition.

PHYSICS-DSE: Nano Materials and Applications

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

Unit-I

Nanoscale Systems: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.

Synthesis Of Nanostructure Materials: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.

(25 Lectures)

Unit-II

Characterization: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy. Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).

(25 Lectures)

Reference books:

- 1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- 2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- 3. K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- 4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- 5. M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).

- 6. Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).
- 7. Nanotechnology- Rakesh Rathi (S Chand & Company, New Delhi)

PHYSICS-DSE: Bio-Physics

(Credits: Theory-05, Tutorials-01) Theory: 50 Classes (1hr duration)

Unit-I

Building Blocks & Structure of Living State: Atoms and ions, molecules essential forblife, what is life. **Living state interactions:** Forces and molecular bonds, electric &bthermal interactions, electric dipoles, casimir interactions, domains of physics in biology.

Heat Transfer in biomaterials: Heat Transfer Mechanism, The Heat equation, Joule heating of tissue. **Living State Thermodynamics:** Thermodynamic equilibrium, fIrst law of thermodynamics and conservation of energy. Entropy and second law of thermodynamics, Physics of many particle systems, Two state systems, continuous energy distribution, Composite systems, Casimir contribution of free energy, Protein folding and unfolding.

(25 Lectures)

Unit-II

Open systems and chemical thermodynamics: Enthalpy, Gibbs Free Energy and chemical potential, activation energy and rate constants, enzymatic reactions, ATP hydrolysis & synthesis, Entropy of mixing, The grand canonical ensemble, Hemoglobin.

Diffusion and transport Maxwell-Boltzmann statistics, Fick's law of diffusion, sedimentation of Cell Cultures, diffusion in a centrifuge, diffusion in an electric field, Lateral diffusion in membranes, Navier stokes equation, low Reynold's Number Transport, Active and passive membrane transport.

Fluids: Laminar and turbulent fluid flow, Bernoulli's equation, equation of continuity, venture effect, Fluid dynamics of circulatory systems, capillary action.

Bioenergetics and Molecular motors: Kinesins, Dyneins, and microtubule dynamics, Brownian motion, ATP synthesis in Mitochondria, Photosynthesis in Chloroplasts, Light absorption in biomolecules, vibrational spectra of bio-biomolecules.

(25Lectures)

Reference Books:

- Introductory Biophysics, J. Claycomb, JQP Tran, Jones & Bartelett Publishers
- Aspects of Biophysics, Hughe S W, John Willy and Sons.
- Essentials of Biophysics by P Narayanan, New Age International
- Molecular Biophysics- P.K.Banarjee (S. Chand Publication) 2014.
- •. Essentials of Biophysics: P. Narayanan, (New Age International, New Delhi) 2005.
- •. Biophysics: An introduction: Rodney Cotterill, John Wiley and Sons Ltd, 2002.
- •.Biophysics- Dr.G.R.Chatwal (Himalaya Pub.)2011

PHYSICS-DSE: Project (Credits: 06) (Compulsory)

Skill Enhancement Course (2) (Credit: 02 each)-

SEC-1 - Communicative English and English Writing Skill

(Compulsory) Credits: 02 Theory: 20 Classes (1hr duration)

SEC-2 (TO BE TAUGHT IN IV SEMESTER)-BASIC INSTRUMENTATION

SKILLS (Credits: 02) Theory: 20 Classes (1hr duration)

This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.

Unit-I

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. **Multimeter:** Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance.

AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance.

Cathode Ray **Oscilloscope:** Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only— no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.

(10 Lectures)

Unit-II

Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.

Digital Instruments: Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter.

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy and resolution.

(10 Lectures)

The test of lab skills will be of the following test items:

- 1. Use of an oscilloscope.
- 2. CRO as a versatile measuring device.
- 3. Circuit tracing of Laboratory electronic equipment,
- 4. Use of Digital multimeter/VTVM for measuring voltages
- 5. Circuit tracing of Laboratory electronic equipment,

- 6. Winding a coil / transformer.
- 7. Study the layout of receiver circuit.
- 8. Trouble shooting a circuit
- 9. Balancing of bridges

Laboratory Exercises:

- 1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
- 2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.
- 3. To measure Q of a coil and its dependence on frequency, using a Q-meter.
- 4. Measurement of voltage, frequency, time period and phase angle using CRO.
- 5. Measurement of time period, frequency, average period using universal counter/ frequency counter.
- 6. Measurement of rise, fall and delay times using a CRO.
- 7. Measurement of distortion of a RF signal generator using distortion factor meter.
- 8. Measurement of R, L and C using a LCR bridge/ universal bridge.

Open Ended Experiments:

- 1. Using a Dual Trace Oscilloscope
- 2. Converting the range of a given measuring instrument (voltmeter, ammeter)

Reference Books:

- A text book in Electrical Technology B L Theraja S Chand and Co.
- Performance and design of AC machines M G Say ELBS Edn.
- Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- Logic circuit design, Shimon P. Vingron, 2012, Springer.
- Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata McGraw Hill
- Electronic circuits: Handbook of design and applications, U. Tietze, Ch. Schenk, 2008, Springer
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

B.Sc. PHYSICS GE Syllabus Under CHOICE BASED CREDIT SYSTEM

1/2 semester :- 2015-2016 onwards

3/4 semester :- 2016-2017 onwards

P.G. Department of Physics Khallikote University Berhampur.

SEMESTER-I

Generic Elective Papers (GE) (Minor-Physics) (any two) for other Departments/Disciplines: (Credit: 06 each)

GE-1:PAPER-1 MECHANICS

(Credits: Theory-04, Practicals-2) Theory: 40 Classes (1hr duration)

UNIT-I

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. (**2 Lectures**)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (2 Lectures)

Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. (4 Lectures)

Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. (2 Lectures)

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (3 Lectures)

Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS). Weightlessness. Physiological effects on astronauts. (7Lectures)

UNIT-II

Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations.

(6 Lectures)

Elasticity: Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method. (8 Lectures)

Special Theory of Relativity: Constancy of speed of light. Postulates of Special Relativity. Length contraction. Time dilation. Relativistic addition of velocities. (6 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate

Reference Books:

- University Physics. F.W. Sears, M.W. Zemansky and H.D. Young, 13/e, 1986. Addison-Wesley
- Mechanics Berkeley Physics, Vol..1: Charles Kittel, et. al. 2007, Tata McGraw-Hill.
- Physics Resnick, Halliday & Walker 9/e, 2010, Wiley
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

- Properties of Matter D.S. Mathur (S.Chand publication) 2013
- Mechanics- D.C.Tayal (Himalaya Publication) 2013
- Classical Dynamics of Particles and Systems –S. T. Thornton (Cengage Learning) 2012
- Analytical Mechanics-Fowles (Cengage Learnings) 2014
- •Classical Mechanics-M.Das, P.K.Jena, M.Bhuyan and R.N.Mishra (Srikrishna Publication)

PHYSICS LAB: GE LAB: MECHANICS 20 Classes (2hr duration)

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
- 2. To determine the Height of a Building using a Sextant.
- 3. To determine the Moment of Inertia of a Flywheel.
- 4. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 5. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 6. To determine the Elastic Constants of a Wire by Searle's method.
- 7. To determine g by Bar Pendulum.
- 8. To determine g by Kater's Pendulum.
- 9. To study the Motion of a Spring and calculate (a) Spring Constant, (b) g.

Reference Books:

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

SEMESTER-III

GE-1: PAPER-2 ELECTRICITY, MAGNETISM AND EMT

(Credits: Theory-04, Practicals-02)Theory: 40 Classes (1hr duration)

UNIT-I

Vector Analysis: Scalar and Vector product, gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). (8 Lectures)

Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line

integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. (12 Lectures)

UNIT-II

Magnetism:

Magnetostatics: Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferromagnetic materials. (6 Lectures)

Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.

(4 Lectures)

Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. (10 Lectures)

Reference Books:

- Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
- Electricity & Magnetism, J.H. Fewkes & J. Yarwood. Vol. I, 1991, Oxford Univ. Press
- Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing House.
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- D.J.Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.
- •Electricity and Magnetism- K.K Tewari (S. Chand Higher Academics)2013

GE LAB: ELECTRICITY, MAGNETISM AND EMT 20 Classes (2hr duration)

- 1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
- 2. Ballistic Galvanometer:
- (i) Measurement of charge and current sensitivity
- (ii) Measurement of CDR
- (iii) Determine a high resistance by Leakage Method

- (iv) To determine Self Inductance of a Coil by Rayleigh's Method. 3. To compare capacitances using De'Sauty's bridge.
- 4. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx) 5. To study the Characteristics of a Series RC Circuit.
- 6. To study a series LCR circuit LCR circuit and determine its (a) Resonant frequency, (b) Quality factor
- 7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor ${\bf Q}$
- 8. To determine a Low Resistance by Carey Foster's Bridge.
- 9. To verify the Thevenin and Norton theorems
- 10. To verify the Superposition, and Maximum Power Transfer Theorems

Reference Books

- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed.2011, Kitab Mahal

B.Sc. PHYSICS Honours Syllabus Under CHOICE BASED CREDIT SYSTEM

1/2 semester :- 2015-2016 onwards

3/4 semester :- 2016-2017 onwards

5/6 semester :- 2017-2018 onwards

P.G. Department of Physics Khallikote University Berhampur.

Course Structure (Physics-Major) Details of courses under B.Sc. (Honors)

Course

Theory+ Practical Theory + Tutorial _____ I. Core Course (14 Papers) 14X4 = 5614X5=70**Core Course Practical / Tutorial*** (14 Papers) 14X2=28 14X1=14 **II. Elective Course** (8 Papers) A.1. Discipline Specific Elective 4X4=164X5 = 20(4 Papers) A.2. Discipline Specific Elective Practical/Tutorial* $4 \times 2 = 8$ 4X1=4(4 Papers) B.1. Generic Elective/ Interdisciplinary 4X4=164X5=20(4 Papers) B.2. Generic Elective Practical/ Tutorial* 4 X 2=8 4X1=4(4 Papers) • Optional Dissertation or project work in place of one Discipline Specific Elective paper (6 credits) in 6th Semester **III. Ability Enhancement Courses** 1. Ability Enhancement Compulsory (2 Papers of 2 credit each) $2 \times 2 = 4$ $2 \times 2 = 4$ **Environmental Science** English/MIL Communication 2. Ability Enhancement Elective (Skill Based) (Minimum 2) $2 \times 2 = 4$ $2 \times 2 = 4$ (2 Papers of 2 credit each) **Total credit** 140 140

*Credits

Institute should evolve a system/policy about ECA/ General Interest/Hobby/Sports/NCC/NSS/related courses on its own.

^{*} wherever there is a practical there will be no tutorial and vice-versa

Mark Distribution

Core Course: 14x100=1400

DSE: 3x100=300 **Project:** =100 **GE-I**: 2x100=200**GE-II**: 2x100=200

Ability Enhancement (Compulsory): 2x50=100

Ability Enhancement (Elective, Skill Based): 2x50=100

Total Mark=2400, Total no of Papers=26

Subjects with Practical:

Theory-75 Marks, Practical-25 Marks

Mid Semester Theory-**15** Marks, End Semester Theory-**60** Marks There is no Practical Exam. in Mid Semester.

Subjects without Practical: 100 Marks

Mid Semester-20 Marks, End Semester-80 Marks

Each Theory class is of 1hr. duration and each practical class is of 2hrs. duration.

Sem	CORE COURESE 14	Ability Enhancement Compulsory Course (AECC) (2)	Ability Enhancement Elective Course (AEEC) (2) (Skill Based)	Elective: Discipline Specific DSE (4)	Elective: Generic (GE) (4)
I	Mathematical Physics-I (4+2) Mechanics (4 +2)	M.I.L/Alt. English	(OKIII Dasca)		GE-1 Mathematics-I
II	Electricity& Magnetism(4+2) Waves and Optics (4 + 2)	Environmental Science			GE-2 Chemistry-I
III	Mathematical Physics—II (4 +2) Thermal Physics (4 + 2) Digital Systems and Applications (4 + 2)		SEC -1 Communicative English and English Writing Skill		GE-3 Mathematics-II
IV	Mathematical Physics–III (4+2) Elements of Modern Physics (4+2) Analog Systems & Applications (4+2)		SEC -2 Subject specific Skill: Basic Instrumentation Skills		GE-4 Chemistry-II
V	Quantum Mechanics and Applications (4+ 2) Solid State Physics (4 + 2)			DSE-1 Classical Dynamics (Compulsory) DSE-2 Nuclear and Particle Physics (Compulsory)	
VI	Electromagnetic Theory (4+2) Statistical Mechanics (4 + 2)			DSE-3 Nano Materials and Applications DSE-4 (Project)	

SEMESTER	COURSE OPTED	COURSE NAME	Credits
I	Ability Enhancement Compulsory	English/MIL communications/	2
4 Papers			
350 Marks	Course-I	Environmental Science	
	Core course-I	Mathematical Physics-I	4
	Core course-II	Mechanics	4
	Core Course-II Practical/Tutorial	PRACTICAL	4
1	Generic Elective -1	GE-1	4/5
	Generic Elective -1 Practical/Tutorial		2/1
II	Ability Enhancement Compulsory	English/MIL communications/	2
4 Papers	Course-II	Environmental Science	
350 Marks	Core course-III	Electricity and Magnetism	4
	Core course-IV	Waves and Optics	4
	Core Course-IV Practical/Tutorial	PRACTICAL	4
	Generic Elective -2	GE-2	4/5
	Generic Elective -2 Practical/Tutorial		2/1
III	Core course-V	Mathematical Physics-II	4
	Core course-VI	Thermal Physics	4
(450 Marks)	Core Course-VI Practical/Tutorial	PRACTICAL	4
,	Core course-VII	Digital Systems and Applications	4
	Core Course-VII Practical/Tutorial	Digital Systems & Applications	2
		Lab	
	Skill Enhancement Course -1	SEC-1	2
	Generic Elective -3	GE-3	4/5
	Generic Elective -3 Practical/Tutorial		2/1
IV	Core course-VIII	Mathematical Physics III	4
5 Papers	Core Course-VII Practical/Tutorial	Mathematical Physics-III Lab	2
•	Core course-IX	Elements of Modern Physics	4
(450 Marks)	Core Course-IX Practical/Tutorial	Elements of Modern Physics Lab	2
(== 0 = ==============================	Core course-X	Analog Systems and Applications	4
	Core Course-XPractical/Tutorial	Analog Systems & Applications	2
		Lab	
	Skill Enhancement Course -2	SEC -2	2
	Generic Elective -4	GE-4	4/5
	Generic Elective -4 Practical/Tutorial		2/1
V	Core course-XI	Quantum Mechanics &	4
4 Papers		Applications	
1	Core Course-XI Practical/Tutorial	Quantum Mechanics Lab	2
(400 Marks)	Core course-XII	Solid State Physics	4
()	Core Course-XII Practical/Tutorial	Solid State Physics Lab	2
	Discipline Specific Elective -1	DSE-1	4/5
	Discipline Specific Elective -1	DSE-1 Practical/Tutorial	2/1
	Pisorbillic obcome Flective -1	DOE I I Idolical/ Idioliai	<i>4</i> / 1

	Practical/Tutorial		
	Discipline Specific Elective -2	DSE-2	4/5
	Discipline Specific Elective- 2 Practical/Tutorial	DSE-2 Practical/Tutorial	2/1
VI	Core course-XIII	Electro-magnetic Theory	4
4 Papers	Core Course-XIII Practical/Tutorial	Electro-magnetic Theory Lab	2
_	Core course-XIV	Statistical Mechanics	4
(400 Marks)	Core Course-XIV Practical/Tutorial	Statistical Mechanics Lab	2
	Discipline Specific Elective3	DSE-3	4/5
	Discipline Specific Elective -3 Practical/Tutorial	DSE-3 Practical/Tutorial	2/1
	Discipline Specific Elective-4	DSE-4 (Project: Report+Viva)	6
Total Credits			140

Core Papers (C): (Credit:06 each, 04 Theory and 02 Practical)

- 1. Mathematical Physics-I (4 + 2)
- 2. Mechanics (4 + 2)
- 3. Electricity and Magnetism (4 + 2)
- 4. Waves and Optics (4 + 2)
- 5. Mathematical Physics–II (4 + 2)
- 6. Thermal Physics (4 + 2)
- 7. Digital Systems and Applications (4 + 2)
- 8. Mathematical Physics III (4 + 2)
- 9. Elements of Modern Physics (4 + 2)
- 10. Analog Systems and Applications (4 + 2)
- 11. Quantum Mechanics and Applications (4 + 2)
- 12. Solid State Physics (4 + 2)
- 13. Electromagnetic Theory (4 + 2)
- 14. Statistical Mechanics (4 + 2)

Discipline Specific Elective Papers: (Credit: 06 each) (4 papers) DSE 1 - 4

- 1. Classical Dynamics (5) + Tutorials (1) (Compulsory)
- 2. Nuclear and Particle Physics (5) + Tutorials (1) (Compulsory)
- 3. Project/Dissertation (Compulsory)
- 4. Computational Physics (**Elective**)
- 5. Nano Materials and Applications (5) + Tutorials (1) (**Elective**)
- 6. Biophysics (5) + Tutorials (1) (**Elective**)

Generic Elective/Interdisciplinary(4 papers-Two papers from two disciplines)- GE 1- GE 4

- 1. Mathematics (5) + Tut (1) (Compulsory)
- 2. Chemistry Th. (4) + Lab (2)
- 3. Economics (5) + Tut (1)
- 4. Computer Science Th.(4) + Lab
- (2) 5.Geology Th. (4) + Lab (2)

OR

Vocational Course (24 credits)

Skill Enhancement Courses (2 papers) (Credit: 02 each)- SEC 1 to SEC 2

- 1. Communicative English and English Writing Skill (Compulsory)
- 2. Basic Instrumentation Skills
- 3. Renewable Energy and Energy harvesting
- 4. Applied Optics

Generic Elective Papers (GE) (Minor-Physics) (any two) for other Departments/Disciplines: (Credit: 06 each)

- 1. Mechanics (4) + Lab (2)
- 2. Electricity and Magnetism (4) + Lab (2)
- 3. Thermal Physics (4) + Lab(2)
- 4. Waves and Optics (4) + Lab (2)
- 5. Elements of Modern Physics (4) + Lab (2)
- 6. Solid State Physics (4) + Lab (2)

Important:

- 1.Each University/Institute should provide a brief write-up about each paper outlining the salient features, utility, learning objectives and prerequisites.
- 2. University/Institute can add/delete some experiments of similar nature in the Laboratory papers.
- 3. The size of the practical group for practical papers is recommended to be 12-15 students.
- 4. University/Institute can add to the list of reference books given at the end of each paper.

CORE COURSE (HONOURS IN PHYSICS)

·-----

Semester I

PHYSICS-C I: MATHEMATICAL PHYSICS-I

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of course is on applications in solving problems of interest to physicists. The students are to be examined entirely on the basis of problems, seen and unseen.

UNIT-I

Vector Calculus:

Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields. (5 Lectures)

Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities, Gradient, divergence, curl and Laplacian in spherical and cylindrical coordinates. **(8 Lectures)**

UNIT-II

Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs). (12 Lectures)

Calculus:

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. (2 Lectures)

Dirac Delta function and its properties:

Definition of Dirac delta function. Properties of Dirac delta function. (2 Lectures)

UNIT-III

Orthogonal Curvilinear Coordinates:

Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems. Comparison of velocity and acceleration in cylindrical and spherical coordinate system.

6 Lectures)

Matrices:

Different types of matrices, algebra of matrices, Determinant of a matrix, Inverse of a matrix, Rank, Orthogonal, Unitary and similarity transformations, Solutions of linear equations, eigen value, eigen vectors, Diagonalisation of a matrix.

5Lectures)

Reference Books:

- Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013,7th Edn., Elsevier.
- An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI

learning.Differential Equations, George F. Simmons, 2007, McGraw Hill.

- Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.
- Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book
- Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and Bartlett Learning
- Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.
- Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press
- Mathematical Physics and Special Relativity --M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) 2 delition 2009
- Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- Mathematical Physics Satya Prakash.
- Mathematical Physics H.K.Dass.
- Mathematical Physics-Goswami (Cengage Learning) 2014
- Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006

_

PHYSICS LAB- C I LAB: 20 Classes (2 hr duration)

The aim of this Lab is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- The course will consist of lectures (both theory and practical) in the Lab
- Evaluation done not on the programming but on the basis of formulating the problem
- Aim at teaching students to construct the computational problem to be solved
- Students can use any one operating system Linux or Microsoft Windows

Topics	Description with Applications
Introduction and Overview	Computer architecture and organization, memory and
	Input/output devices.
Basics of scientific computing	Binary and decimal arithmetic, Floating point numbers,
	algorithms, Sequence, Selection and Repetition, single
	and double precision arithmetic, underflow &overflow
	emphasize the importance of making equations in terms
	of dimensionless variables, Iterative methods.
Errors and error Analysis	Truncation and round off errors, Absolute and relative
	errors, Floating point computations.
Review of C & C++ Programming	Introduction to Programming, constants, variables and

fundamentals	data types, operators and Expressions, I/O statements,
	scanf and printf, c in and c out, Manipulators for data
	formatting, Control statements (decision making and
	looping statements) (Ifstatement. Ifelse Statement.
	Goto Statement. Switch Statement. Unconditional and
	Conditional Looping. While Loop. Do-While Loop.
	For Loop, Break and Continue Statements, Nested Loops, Arrays
	(1D and 2D) and Strings, User defined functions, Structures and
	Unions, Idea of Classes and Objects.
Programs:	Sum & average of a list of numbers, largest of a given list of numbers and its location in the list, sorting of numbers in ascending descending order, Binary search
Random number generation	Area of circle, area of square, volume of sphere, value of π .

Any other experiments as and when they are set up.

Referred Books:

- Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- Schaum's Outline of Programming with C++. J. Hubbard, 2000, McGraw---Hill Pub.
- Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal, 3rd Edn. 2007, Cambridge University Press.
- A first course in Numerical Methods, U.M. Ascher & C. Greif, 2012, PHI Learning.
- Elementary Numerical Analysis, K.E. Atkinson, 3 r d Edn., 2 0 0 7, Wiley India Edition.
- Numerical Methods for Scientists & Engineers, R.W. Hamming, 1973, Courier Dover Pub.
- An Introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press.

PHYSICS-C II: MECHANICS (Credits: Theory-04, Practicals- 02) Theory: 40 Classes (1hr duration)

UNIT-I

Rotational Dynamics: Motion under central force, Acceleration in Polar Coordinates, Centre of Mass and Laboratory frames. Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Bar and Katers Pendulum-Correction. (10 Lectures)

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. (3 Lectures)

UNIT-II

Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire.

(3 Lectures)

Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube. (2 Lectures)

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere.

(3 Lectures)

Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS). Physiological effects on astronauts. (5 Lectures)

UNIT-III

Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor. (5 Lectures)

Special Theory of Relativity: Michelson-Morley Experiment and its outcome. Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Massenergy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum. Energy-Momentum Four Vector. (8 Lectures)

Reference Books:

- An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.
- Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.
- Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning.
- Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

Additional Books for Reference

- Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000
- University Physics. F.W Sears, M.W Zemansky, H.D Young 13/e, 1986, Addison Wesley
- Physics for scientists and Engineers with Modern Phys., J.W. Jewett, R.A.Serway, 2010, Cengage Learning
- Theoretical Mechanics, M.R. Spiegel, 2006, Tata McGraw Hill.
- Mechanics J. C. Slater and N. H. Frank (McGraw-Hill)

PHYSICS LAB-C II LAB 20 Classes (2hr duration)

- 1. To study the random error in observations.
- 2. To determine the height of a building using a Sextant.
- 3. To study the Motion of Spring and calculate (a) Spring constant, (b) **g** and (c) Modulus of rigidity.
- 4. To determine the Moment of Inertia of a Flywheel.
- 5. To determine **g** and velocity for a freely falling body using Digital Timing Technique

- 6. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 7. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 8. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 9. To determine the elastic Constants of a wire by Searle's method.
- 10. To determine the value of g using Bar Pendulum.
- 11. To determine the value of g using Kater's Pendulum.
- 12. To determine the Young's Modulus by single cantilever/ Double Cantilever.
- 13. To Study the the laws of transeverse vibration of strings by Sonometer.
- 14. To Callibrate the set of weights.

Reference Books

- Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, AsiaPublishing House
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal.

Semester II

PHYSICS-C III: ELECTRICITY AND

MAGNETISM (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Electric Field and Electric Potential

Electric field: Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. (3 Lectures)

Conservative nature of Electrostatic Field. Electrostatic Potential. Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. (3 Lectures)

Electrostatic energy of system of charges. Electrostatic energy of a charged sphere. Conductors in an electrostatic Field. Surface charge and force on a conductor. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor. Method of Images and its application to: (1) Plane Infinite Sheet and (2) Sphere. (4 Lectures)

Dielectric Properties of Matter: Electric Field in matter. Polarization, Polarization Charges. Electrical Susceptibility and Dielectric Constant. Capacitor (parallel plate, spherical, cylindrical) filled with dielectric. Displacement vector **D**. Relations between **E**, **P** and **D**. Gauss' Law in dielectrics. (4 Lectures)

UNIT-II

Magnetic Field: Magnetic force between current elements and definition of Magnetic Field **B**. Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid. Properties of **B**: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field. Ballistic Galvanometer: Torque on a current Loop. Ballistic Galvanometer: Current and Charge Sensitivity. Electromagnetic damping. Logarithmic damping. CDR. (12 Lectures)

UNIT-III

Magnetic Properties of Matter: Magnetization vector (**M**). Magnetic Intensity (**H**). Magnetic Susceptibility and permeability. Relation between **B**, **H**, **M**. Ferromagnetism. B-H curve and hysteresis. (5 Lectures)

Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. (3 Lectures)

Electrical Circuits: AC Circuits: Kirchhoff's laws for AC circuits. Complex Reactance and Impedance. Series LCR Circuit: (1) Resonance, (2) Power Dissipation and (3) Quality Factor, and (4) Band Width. Parallel LCR Circuit. (6 Lectures)

Reference Books:

- Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw
- Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education
- Introduction to Electrodynamics, D.J. Griffiths, 3rd Edn., 1998, Benjamin Cummings.
- Feynman Lectures Vol.2, R.P.Feynman, R.B.Leighton, M. Sands, 2008, Pearson Education
- Elements of Electromagnetics, M.N.O. Sadiku, 2010, Oxford University Press.
- Electricity and Magnetism, J.H.Fewkes & J.Yarwood, Vol. I, 1991, Oxford Univ. Press.

PHYSICS LAB-C III LAB 20 Classes (2hr duration)

- 1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the characteristics of a series RC Circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- 7. To verify the Thevenin and Norton theorems.
- 8. To verify the Superposition, and Maximum power transfer theorems.
- 9. To determine self inductance of a coil by Anderson's bridge.
- 10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
- 11. To study the response curve of a parallel LCR circuit and determine its (a) Antiresonant frequency and (b) Quality factor Q.
- 12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
- 13. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 14. To determine self-inductance of a coil by Rayleigh's method.
- 15. To determine the mutual inductance of two coils by Absolute method.
- 16. To determine the low resistance of a wire using Potentiometer.
- 17. To determine the low resistance of a wire using Carey-fosters bridge.
- 18. To compare Capacitances by De Sauty's Bridge.
- 19. To determine the resistance of Ballistic Galvanometer by Half Deflection method.
- 20. To determine the figure of merit of a Ballistic Galvanometer.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal 14
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

PHYSICS-C IV: WAVES AND OPTICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Geometrical optics: Fermat's principle, reflection and refraction at plane interface, Matrix formulation of geometrical Optics. Idea of dispersion. Application to thick lense, Ramsden and Huygens eyepiece. (4 Lectures)

Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive (Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. (**4 Lectures**)

Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. Superposition of N harmonic waves.

(2 Lectures)

Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence. (3 Lectures)

UNIT-II

Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index. (8 Lectures)

Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry-Perot interferometer. (5 Lectures)

UNIT-III

Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating. (**7 Lectures**)

Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.

(7 Lectures)

Reference Books

- Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- Optics Brijlal & Subramaniam- (S. Chand Publication) 2014.
- Geometrical and Physical Optics R.S. Longhurst, Orient Blackswan, 01-Jan-1986
- Vibrations and Waves -- A. P. French, (CBS) Indian print 2003
- Optics, E. Hecht (PearsonIndia)

PHYSICS LAB- C IV LAB 20 Classes (2hr duration)

- 1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 T law.
- 2. To investigate the motion of coupled oscillators.
- 3. To study Lissajous Figures.
- 4. Familiarization with: Schuster's focusing; determination of angle of prism.
- 5. To determine refractive index of the Material of a prism using sodium source.
- 6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.
- 7. To determine the wavelength of sodium source using Michelson's interferometer.
- 8. To determine wavelength of sodium light using Fresnel Biprism.
- 9. To determine wavelength of sodium light using Newton's Rings.
- 10.To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.
- 11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.
- 12. To determine dispersive power and resolving power of a plane diffraction grating.
- 13. To determine the Dispersive power and Cauchys Constant using Hg-Source.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani

Semester III

PHYSICS-C V: MATHEMATICAL PHYSICS-II

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity.

(10 Lectures)

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral). (4 Lectures)

UNIT-II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance, Frobenius method and its applications to differential equations: Legendre & Hermite Differential Equations. Properties of Legendre & Hermite Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Associated Legendre polynomials and spherical harmonics. (12 Lectures)

UNIT-III

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. (4 Lectures)

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Conducting and dielectric sphere in an external uniform electric field. Wave equation and its solution for vibrational modes of a stretched string. (10 Lectures)

Reference Books:

- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
- Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill.
- Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub.

- Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books
- Mathematical Physics and Special Relativity --M. Das, P.K. Jena and B.K. Dash (Srikrishna Prakashan) 2nd Edition 2009
- Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- Mathematical Physics-Goswami (CENGAGE Learning) 2014
- Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006
- Mathematics for Physicists, P. Dennery and A. Krzywicki Dover)
- Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.

PHYSICS LAB-C V LAB 20 Classes (2hr duration)

The aim of this Lab is to use the computational methods to solve physical problems. Course will consist of lectures (both theory and practical) in the Lab. Evaluation done not on the programming but on the basis of formulating the problem.

Topics	Description with Applications
Introduction to Numerical	Introduction to Scilab, Advantages and disadvantages, Scilab
computation software Scilab	environment, Command window, Figure window, Edit
	window, Variables and arrays, Initialising variables in Scilab,
	Multidimensionalarrays, Subarray, Special values,
	Displaying output data, data file, Scalar and array operations,
	Hierarchy of operations, Built in Scilab functions,
	Introduction to plotting, 2D and 3D plotting (2), Branching
	Statements and program design, Relational & logical
	operators, the while loop, for loop, details of loop operations,
	break & continue statements, nested loops, logical arrays and
	vectorization (2) User defined functions, Introduction to
	Scilab functions, Variable passing in Scilab, optional
	arguments, preserving data between calls to a function,
	Complex and Character data, string function,
	Multidimensional arrays (2) an introduction to Scilab file
	processing, file opening and closing, Binary I/o functions,
	comparing binary and formatted functions, Numerical
	methods and developing the skills of writing a program (2).
Curve fitting, Least square fit,	Ohms law to calculate R, Hooke's law to calculate spring
Goodness of fit, standard	constant
deviation	
Solution of Linear system of	Solution of mesh equations of electric circuits (3 meshes)
equations by Gauss elimination	Solution of coupled spring mass systems (3 masses)
method and Gauss Seidal	

method. Diagonalization of	
matrices, Inverse of a matrix,	
Eigen vectors, eigen values	
problems	
Solution of ODE	First order differential equation
First order Differential equation	Radioactive decay
Euler, modified Euler and	• Current in RC, LC circuits with DC source
Runge-Kuttasecond order	Newton's law of cooling
methods	Classical equations of motion
Second order differential	-
equation.	Second order Differential Equation
Fixed difference method	Harmonic oscillator (no friction)
	Damped Harmonic oscillator
	Over damped
	Critical damped
	Oscillatory
	Forced Harmonic oscillator
	• Transient and
	Steady state solution
	Apply above to LCR circuits also

Reference Books:

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J.20 Bence, 3rd ed., 2006, Cambridge University Press
- Complex Variables, A.S. Fokas & M.J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A.V. Wouwer, P. Saucez, C.V. Fernández. 2014 Springer
- Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C VI: THERMAL PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration) (Include related problems for each topic)

UNIT-I

Introduction to Thermodynamics

Recapitulation of Zeroth and First law of thermodynamics:

Second Law of Thermodynamics: Reversible and Irreversible process with examples.

Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. (7 Lectures)

Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. Unattainability of Absolute Zero. (7 Lectures)

UNIT-II

Thermodynamic Potentials: Extensive and Intensive Thermodynamic Variables. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, Clausius Clapeyron Equation and equations (6 Lectures)

Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Values of Cp-Cv, (3) Tds Equations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process. (6 Lectures)

UNIT-III

Kinetic Theory of Gases

Distribution of Velocities: Maxwell-Boltzmann Law of Distribution of Velocities in an Ideal Gas and its Experimental Verification. Stern's Experiment. Mean, RMS and Most Probable Speeds. Degrees of Freedom. Law of Equipartition of Energy (No proof required). Specific heats of Gases. **(4 Lectures)**

Molecular Collisions: Mean Free Path. Collision Probability. Estimates of Mean Free Path. Transport Phenomenon in Ideal Gases: (1) Viscosity, (2) Thermal Conductivity and (3) Diffusion. Brownian Motion and its Significance. (4 Lectures)

Real Gases: Behavior of Real Gases: Deviations from the Ideal Gas Equation. The Virial Equation. Andrew's Experiments on CO2 Gas. Critical Constants. Continuity of Liquid and Gaseous State. Vapour and Gas. Boyle Temperature. Van der Waal's Equation of State for Real Gases. Values of Critical Constants. Law of Corresponding States. Comparison with Experimental Curves. p-V Diagrams. Joule's Experiment. Free Adiabatic Expansion of a Perfect Gas. Joule-Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and Van der Waal Gases. Temperature of Inversion. Joule-Thomson Cooling. **(6 Lectures)**

Reference Books:

- Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N.Srivastava, 1958, Indian Press
- Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.
- Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.
- Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press
- Heat and Thermal Physics-Brijlal & Subramaiam (S.Chand Publication) 2014
- Thermal Physics-- C. Kittel and H. Kroemer (McMillan Education India) 2010

PHYSICS LAB- C VI LAB

20 Classes (2hr duration)

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.
- 3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- 4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.
- 5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT).
- 6. To study the variation of Thermo-Emf of a Thermocouple with Difference of Temperature of its Two Junctions.
- 7. To calibrate a thermocouple to measure temperature in a specified Range using (1) Null Method, (2) Direct measurement using Op-Amp difference amplifier and to determine Neutral Temperature.
- 8. To determine J by Caloriemeter.

Reference Books

- Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

PHYSICS-C VII: DIGITAL SYSTEMS AND

APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Integrated Circuits (Qualitative treatment only): Active & Passive components. Discrete components. Wafer. Chip. Advantages and drawbacks of ICs. Scale of integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Classification of ICs. Examples of Linear and Digital ICs. (3 **Lectures**) **Digital Circuits**: Difference between Analog and Digital Circuits. Binary Numbers. Decimal to Binary and Binary to Decimal Conversion. BCD, Octal and Hexadecimal numbers. AND, OR and NOT Gates (realization using Diodes and Transistor). NAND and NOR Gates as Universal Gates. XOR and XNOR Gates and application as Parity Checkers. (5 **Lectures**)

Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification of Logic Circuit using Boolean Algebra. Fundamental Products. Idea of Minterms and Maxterms. Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. (5 Lectures)

UNIT-II

Introduction to CRO: Block Diagram of CRO. Electron Gun, Deflection System and Time Base. Deflection Sensitivity. Applications of CRO: (1) Study of Waveform, (2) Measurement of Voltage, Current, Frequency, and Phase Difference. (3 Lectures)

Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders, Encoders.

(4 Lectures)

Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and Full Adders. Half & Full Subtractors, 4-bit binary Adder/Subtractor. (5 Lectures)

Timers: IC 555: block diagram and applications: Astable multivibrator and Monostable multivibrator. (3 Lectures)

UNIT-III

Introduction to Computer Organization: Input/Output Devices. Data storage (idea of RAM and ROM). Computer memory. Memory organization & addressing. Memory Interfacing. Memory Map. (6 Lectures)

Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel-in-Parallel-out Shift Registers (only up to 4 bits). (2 Lectures)

Counters(4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter. (4 Lectures)

Reference Books:

• Digital Principles and Applications, A.P. Malvino, D.P.Leach and Saha, 7th Ed., 2011, Tata McGraw

- Fundamentals of Digital Circuits, Anand Kumar, 2nd Edn, 2009, PHI Learning Pvt. Ltd.
- Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- Digital Systems: Principles & Applications, R.J.Tocci, N.S.Widmer, 2001, PHI Learning
- Logic circuit design, Shimon P. Vingron, 2012, Springer.
- Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall.
- Concept of Electronics: D.C. Tayal (Himalay Publication) 2011
- Electronics-V. K. Meheta (S. Chand Publication)2013
- The Art of Electronics, P. Horowitz and W. Hill, CUP

PHYSICS PRACTICAL-C VII LAB 20 Classes (2hr duration)

- 1. To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.
- 2. To test a Diode and Transistor using a Multimeter.
- 3. To design a switch (NOT gate) using a transistor.
- 4. To verify and design AND, OR, NOT and XOR gates using NAND gates.
- 5. To design a combinational logic system for a specified Truth Table.
- 6. To convert a Boolean expression into logic circuit and design it using logic gate ICs.
- 7. To minimize a given logic circuit.
- 8. Half Adder, Full Adder and 4-bit binary Adder.
- 9. Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.
- 10. To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.
- 11. To build JK Master-slave flip-flop using Flip-Flop ICs
- 12. To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.
- 13. To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.
- 14. To design an astable multivibrator of given specifications using 555 Timer.
- 15. To design a monostable multivibrator of given specifications using 555 Timer.

Reference Books:

- Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.
- Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- Microprocessor Architecture Programming and applications with 8085, R.S. Goankar, 2002, Prentice Hall.
- Microprocessor 8085:Architecture, Programming and interfacing, A. Wadhwa, 2010, PHI Learning.

Semester IV

PHYSICS-VIII: MATHEMATICAL PHYSICS-III

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

UNIT-I

Complex Analysis: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts. Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application in solving Definite Integrals.

UNIT-II

Integrals Transforms:

Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral. Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: One dimensional Wave and Diffusion/Heat Flow Equations. (14 Lectures)

UNIT-III

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits. (12 Lectures)

Reference Books:

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press
- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier.
- Advanced Engineering Mathematics, E. Kreyszig (New Age Publication) 2011.
- Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
 Complex Variables, A. S. Fokas & M. J. Ablowitz, 8th Ed., 2011, Cambridge Univ. Press
- Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill

- First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett.
- Mathematical Physics--H. K. Dass, Dr. Rama Verma (S. Chand Higher Academics) 6th Edition 2011.
- •Mathematical Physics –C. Harper, (Prentice Hall India) 2006.
- •Mathematical Physics-Goswami (Cengage Learning) 2014
- •Mathematical Method for Physical Sciences -- M. L. Boas (Wiley India) 2006
- •Introduction to the theory of functions of a complex variable- E.T.Copson (Oxford) Univ. Press, 1970

PHYSICS PRACTICAL-C VIII LAB 20 Classes (2hr duration)

Scilab based simulations experiments based on Mathematical Physics problems like

1. Solve differential equations: $dy/dx = e^{-x}$ with y = 0 for x = 0 $dy/dx + e^{-x}y = x^2$ $d^2y/dt^2 + 2 dy/dt = -y$ $d^2y/dt^2 + e^{-t}dy/dt = -y$

2. Dirac Delta Function:

Evaluate _____ dx for σ =1,0.1, 0.01 and show it tends to 5

3. Fourier Series:

Program to sum

Evaluate the Fourier coefficients of a given periodic function (square wave)

4. Frobenius method and Special functions:

Plot $P_n(x)$, $J_{\nu}(x)$ Show recursion relation

- 5. Calculation of error for each data point of observations recorded in experiments done in previous semesters (choose any two).
- 6. Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program.
- 7. Evaluation of trigonometric functions e.g. $\sin \theta$, Given Bessel's function at N points find its value at an intermediate point. Complex analysis: Integrate $1/(x^2+2)$ numerically and check with computer integration.

8. Integral transform: FFT of e^{-x2}

Reference Books:

- Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press
- Mathematics for Physicists, P. Dennery and A. Krzywicki, 1967, Dover Publications
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- Scilab (A free software to Matlab): H.Ramchandran, A.S.Nair. 2011 S.Chand & Company
- Scilab Image Processing: Lambert M. Surhone. 2010 Betascript Publishing

PHYSICS-C IX: ELEMENTS OF MODERN PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Atomic Spectra and Models

Inadequacy of classical physics, Brief Review of Black body Radiation, Photoelectric effect, Compton effect, dual nature of radiation, wave nature of particles. Atomic spectra, Line spectra of hydrogen atom, Ritz Rydberg combination principle. Alpha Particle Scattering, Rutherford Scattering Formula, Rutherford Model of atom and its limitations, Bohr's model of H atom, explanation of atomic spectra, correction for finite mass of the nucleus, Bohr correspondence principle, limitations of Bohr model, discrete energy exchange by atom, Frank Hertz Expt. Sommerfeld's Modification of Bohr's Theory. (13 Lectures)

UNIT-II

Wave Particle Duality

de Broglie hypothesis, Experimental confirmation of matter wave, Davisson Germer Experiment, velocity of de Broglie wave, wave particle duality, Complementarity. Superposition of two waves, phase velocity and group velocity, wave packets, Gaussian Wave Packet, spatial distribution of wave packet, Localization of wave packet in time.

Time development of a wave Packet; Wave Particle Duality, Complementarity.

Heisenberg Uncertainty Principle ,Illustration of the Principle through thought Experiments of Gamma ray microscope and electron diffraction through a slit. Estimation of ground state energy of harmonic oscillator and hydrogen atom, non existence of electron in the nucleus. Uncertainty and Complementarities.

(13 Lectures)

UNIT-III

Nuclear Physics

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, Liquid Drop model: semi-empirical mass formula and binding energy, Nuclear Shell Model and magic numbers.

Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay- energy released, spectrum and Pauli's prediction of neutrino; Gamma ray emission, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus.

Fission and fusion- mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions driving stellar energy (brief qualitative discussions).

(14 Lectures)

Reference Books:

- Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.
- Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.
- Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan
- Modern Physics Bernstein, Fishbane and Gasiorowicz (Pearson India) 2010
- Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles -- R. Eisberg (Wiley India) 2012

Additional Books for Reference

- Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2004, PHI Learning.
- Theory and Problems of Modern Physics, Schaum's outline, R. Gautreau and W. Savin, 2nd Edn, Tata McGraw-Hill Publishing Co. Ltd.
- Quantum Physics, Berkeley Physics, Vol.4. E.H. Wichman, 1971, Tata McGraw-Hill Co.
- Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub.
- Six Ideas that Shaped Physics: Particle Behave like Waves, T.A.Moore, 2003, McGraw Hill
- •Modern Physics-Serway (CENGAGE Learnings) 2014
- •Modern Physics ---Murugesan and Sivaprasad –(S. Chand Higher Academics)
- •Physics of Atoms and Molecules Bransden (Pearson India) 2003

PHYSICS PRACTICAL-C IX LAB

20 Classes (2hr duration)

- 1. Measurement of Planck's constant using black body radiation and photo-detector
- 2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
- 3. To determine work function of material of filament of directly heated vacuumdiode.
- 4. To determine the Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the ionization potential of mercury.
- 7. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 9. To setup the Millikan oil drop apparatus and determine the charge of an electron.
- 10. To show the tunneling effect in tunnel diode using I-V characteristics.
- 11. To determine the wavelength of laser source using diffraction of single slit.

- 12. To determine the wavelength of laser source using diffraction of double slits.
- 13. To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal

PHYSICS-C X: ANALOG SYSTEMS AND APPLICATIONS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram. Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. (**4 Lectures**)

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode, (3) Solar Cell. (4 Lectures)

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CE and CC Configurations. Current gains α and β Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions. (5 Lectures)

Unit-II

Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and Voltage Divider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers. **(6 Lectures)**

Coupled Amplifier: RC-coupled amplifier and its frequency response. (4 Lectures)

Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. (4 Lectures)

Unit-III

Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators. (4 Lectures)

Operational Amplifiers (Black Box approach): Characteristics of an Ideal and Practical Op-Amp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground. (4 Lectures)

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3) Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossing detector (8) Wein bridge oscillator. (5 Lectures)

Reference Books:

- Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill.
- Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall.
- Solid State Electronic Devices, B.G.Streetman & S.K.Banerjee, 6th Edn., 2009, PHI Learning
- Electronic Devices & circuits, S.Salivahanan & N.S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill
- OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
- Electronic circuits: Handbook of design & applications, U.Tietze, C.Schenk, 2008, Springer
- Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India
- •Concept of Electronics: D.C.Tayal (Himalay Publication) 2011
- •Electronic devices :Circuits and Applications :W.D. Stanley Prentice Hall
- Electronics V. K. Meheta (S. Chand Publication) 2013
- •.Electronic Circuits :L.Schilling and Velove: 3rd Ed Mc Graw Hill
- Electronics-Raskhit & Chattopadhyay (New age International Publication)2011
- •Electricity and Electronic-D.C.Tayal (Himalaya Pub.)2011
- •Electronic devices and circuits –R.L. Boylstad (Pearson India) 2009

PHYSICS PRACTICAL-C X LAB 20 Classes (2hr duration)

- 1. To study V-I characteristics of PN junction diode, and Light emitting diode.
- 2. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 3. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
- 4. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 5. To study the various biasing configurations of BJT for normal class A operation.
- 6. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.
- 7. To study the frequency response of voltage gain of a RC-coupled transistor amplifier.
- 8. To design a Wien bridge oscillator for given frequency using an op-amp.
- 9. To design a phase shift oscillator of given specifications using BJT.
- 10. To study the Colpitt's oscillator.
- 11. To design a digital to analog converter (DAC) of given specifications.
- 12. To study the analog to digital convertor (ADC) IC.
- 13. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain
- 14. To design inverting amplifier using Op-amp (741,351) and study its frequency response

- 15. To design non-inverting amplifier using Op-amp (741,351) & study its frequency response
- 16. To study the zero-crossing detector and comparator
- 17. To add two dc voltages using Op-amp in inverting and non-inverting mode
- 18. To design a precision Differential amplifier of given I/O specification using Op-amp.
- 19. To investigate the use of an op-amp as an Integrator.
- 20. To investigate the use of an op-amp as a Differentiator.
- 21. To design a circuit to simulate the solution of a 1st/2nd order differential equation.

Reference Books:

- Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall.
- Electronic Principle, Albert Malvino, 2008, Tata Mc-Graw Hill.
- Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson

Semester V

PHYSICS-C XI: QUANTUM MECHANICS AND APPLICATIONS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr

duration) Unit-I

Schrodinger equation & the operators: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Hermitian operator, Eigen values and Eigen functions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. (**8 Lectures**)

Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigen values; expansion of an arbitrary wave function as a linear combination of energy eigen functions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension; wave packets, Fourier transforms and momentum space wave function; Position-momentum uncertainty principle. (**6 Lectures**)

Unit-II

General discussion of bound states in an arbitrary potential- continuity of wave function, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigen functions ground state, zero point energy & uncertainty principle. One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization;

Quantum dot as example; Quantum mechanical scattering and tunnelling in one dimensionacross a step potential & rectangular potential barrier. (14 Lectures)

Unit-III

Atoms in Electric & Magnetic Fields: Electron angular momentum. Space quantization. Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach Experiment. Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyromagnetic Ratio and Bohr Magneton.

Atoms in External Magnetic Fields:- Normal and Anomalous Zeeman Effect. Paschen Back and Stark Effect (Qualitative Discussion only). (12 Lectures)

Reference Books:

- A Text book of Quantum Mechanics, P. M.Mathews and K.Venkatesan, 2nd Ed., 2010, McGraw Hill
- Quantum Mechanics, Robert Eisberg and Robert Resnick, 2nd Edn., 2002, Wiley.
- Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tata McGraw Hill.
- Quantum Mechanics, G. Aruldhas, 2nd Edn. 2002, PHI Learning of India.
- Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.
- Quantum Mechanics: Foundations & Applications, Arno Bohm, 3rd Edn., 1993, Springer
- Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge University Press
- Quantum Physics----S. Gasiorowicz (Wiley India) 2013
- Quantum Mechanics -J.L. Powell and B. Craseman (Narosa) 1988
- Introduction to Quantum Mechanics- M.Das, P.K.Jena, (SriKrishna Prakashan)
- Basic Quantum Mechanics –A.Ghatak (Mc Millan India) 2012
- •. Introduction to Quantum Mechanics R. Dicke and J. Wittke
- Quantum Mechanics- Eugen Merzbacher, 2004, John Wiley and Sons, Inc.
- Introduction to Quantum Mechanics, D.J. Griffith, 2nd Ed. 2005, Pearson Education
- Quantum Mechanics, Walter Greiner, 4th Edn., 2001, Springer
- •Quantum Mechanics F. Mandl (CBS) 2013
- •Cohen-Tannoudji, B Diu and F Laloë, Quantum Mechanics (2 vols) Wiley-VCH 1977

PHYSICS PRACTICAL-C XI LAB 20 Classes (2hr duration)

Use C/C++/Scilab for solving the following problems based on Quantum Mechanics like

1. Solve the s-wave Schrodinger equation for the ground state and the first excited state of the hydrogen atom:

Here, m is the reduced mass of the electron. Obtain the energy eigenvalues and plot the corresponding wavefunctions. Remember that the ground state energy of the hydrogen atom is \approx -13.6 eV. Take e = 3.795 (eVÅ)1/2, hc = 1973 (eVÅ) and m = 0.511x106 eV/c2.

2. Solve the s-wave radial Schrodinger equation for an atom:

where m is the reduced mass of the system (which can be chosen to be the mass of an electron), for the screened coulomb potential

Find the energy (in eV) of the ground state of the atom to an accuracy of three significant digits. Also, plot the corresponding wavefunction. Take e = 3.795 (eVÅ)1/2, m = 0.511x106 eV/c2, and a = 3 Å, 5 Å, 7 Å. In these units $\hbar c = 1973$ (eVÅ). The ground state energy is expected to be above -12 eV in all three cases.

3. Solve the s-wave radial Schrodinger equation for a particle of mass m: For the anharmonic oscillator potential

for the ground state energy (in MeV) of particle to an accuracy of three significant digits. Also, plot the corresponding wave function. Choose m=940 MeV/c2, k=100 MeV fm-2, b=0, 10, 30 MeV fm-3In these units, ch=197.3 MeV fm. The ground state energy I expected to lie between 90 and 110 MeV for all three cases.

4. Solve the s-wave radial Schrodinger equation for the vibrations of hydrogen molecule:

Where μ is the reduced mass of the two-atom system for the Morse potential Find the lowest vibrational energy (in MeV) of the molecule to an accuracy of three significant digits. Also plot the corresponding wave function. Take: m = 940x106eV/C2, D = 0.755501 eV, $\alpha = 1.44$, ro = 0.131349 Å

Laboratory based experiments:

- 5. Study of Electron spin resonance- determine magnetic field as a function of the resonance frequency
- 6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting
- 7. To show the tunneling effect in tunnel diode using I-V characteristics.
- 8. Quantum efficiency of CCDs

Reference Books:

- Schaum's outline of Programming with C++. J.Hubbard, 2000,McGraw-- Hill Publication
- Numerical Recipes in C: The Art of Scientific Computing, W.H. Pressetal., 3rd Edn., 2007, Cambridge University Press.
- An introduction to computational Physics, T.Pang, 2nd Edn., 2006, Cambridge Univ. Press
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer.
- Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & Co.
- Scilab Image Processing: L.M.Surhone.2010 Betascript Publishing ISBN:978-6133459274

PHYSICS-C XII: SOLID STATE PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Types of Lattices, Reciprocal Lattice. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. (8 Lectures)

Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T³ law (6 Lectures)

Unit-II

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia—and Paramagnetic Domains. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss. (6 Lectures) Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. (4 Lectures)

Lasers: Einstein's A and B coefficients. Metastable states. Spontaneous and Stimulated emissions. Optical Pumping and Population Inversion. Three-Level and Four-Level Lasers. Ruby Laser and He-Ne Laser. (4 Lectures)

Unit-III

Elementary band theory: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (04 probe method) & Hall coefficient. (8 Lectures)

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation) (4 Lectures)

Reference Books:

- Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
- Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
- Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- Solid State Physics, M.A. Wahab, 2011, Narosa Publications
- Solid State Physics S. O. Pillai (New Age Publication)
- •Solid State Physics- R.K.Puri &V.K. Babbar (S.Chand Publication)2013
- •Lasers and Non linear Optics –B.B.Laud-Wiley Eastern.
- •LASERS: Fundamentals and Applications Thyagarajan and Ghatak (McMillanIndia) 2012

PHYSICS PRACTICAL-C XII LAB

20 Classes (2 hr duration)

- 1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To measure the Magnetic susceptibility of Solids.
- 3. To determine the Coupling Coefficient of a Piezoelectric crystal.

- 4. To measure the Dielectric Constant of a dielectric Materials with frequency
- 5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- 6. To determine the refractive index of a dielectric layer using SPR
- 7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 8. To draw the BH curve of Fe using Solenoid & determine energy loss from Hysteresis.
- 9. To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
- 10. To determine the Hall coefficient of a semiconductor sample.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India.

Semester VI

PHYSICS-C XIII: ELECTROMAGNETIC THEORY

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Maxwell Equations: Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density.

EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. (**12 Lectures**)

Unit-II

Propagation through conducting media, relaxation time, skin depth. Electrical conductivity of ionized gases, plasma frequency, refractive index, skin depth, application to propagation through ionosphere.

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization cases,

Brewster's law. Reflection & Transmission coefficients. Total internal reflection, evanescent waves. Metallic reflection (normal Incidence)

Optical Fibres:- Numerical Aperture. Step and Graded Indices (Definitions Only). Single and Multiple Mode Fibres (Concept and Definition Only).

(14 Lectures)

Unit-III

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization. Propagation of E.M. Waves in Anisotropic Media. Symmetric Nature of Dielectric Tensor. Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Ordinary & extraordinary refractive indices. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates. Babinet Compensator and its Uses. Analysis of Polarized Light.

Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation. Calculation of angle of rotation. Experimental verification of Fresnel's theory. Specific rotation. Laurent's half-shade polarimeter.

(14 Lectures)

Reference Books:

- Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.
- Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.
- Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
- Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
- Electricity and Magnetism --- D C Tayal (Himalaya Publication)2014
- Introduction to Electrodynamics-A.Z.Capri & P.V.Panat (Alpha Science) 2002
- Optics E.Hecht, (Pearson India)

Additional Books for Reference

- Electromagnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H.Freeman & Co.
- Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.
- Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press
- Electromagnetic Theory-A. Murthy (S. Chand Publication)2014
- Classical Electrodynamics, J. D. Jackson (Wiley India)

PHYSICS PRACTICAL-C XIII LAB 20 Classes (2hr duration)

- 1. To verify the law of Malus for plane polarized light.
- 2. To determine the specific rotation of sugar solution using Polarimeter.
- 3. To analyze elliptically polarized Light by using a Babinet's compensator.
- 4. To study dependence of radiation on angle for a simple Dipole antenna.
- 5. To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil,

Xylene, etc.) by studying the diffraction through ultrasonic grating.

- 6. To study the reflection, refraction of microwaves
- 7. To study Polarization and double slit interference in microwaves.
- 8. To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.
- 9. To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
- 10. To study the polarization of light by reflection and determine the polarizing angle for airglass interface.
- 11. To verify the Stefan's law of radiation and to determine Stefan's constant.
- 12. To determine the Boltzmann constant using V-I characteristics of PN junction diode.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
- Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

PHYSICS-C XIV: STATISTICAL MECHANICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Unit-I

Classical Statistics: Macrostate & Microstate, Elementary Concept of Ensemble, Microcanonical, Canonical and grand canonical ensemble. Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy (with proof) - Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System, Negative Temperature.

(14 Lectures)

Unit-II

Radiation: Properties of Thermal Radiation. Blackbody Radiation. Pure temperature dependence. Kirchhoff's law. Stefan-Boltzmann law: Thermodynamic proof. Radiation Pressure. Wien's Displacement law. Wien's Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law. Ultraviolet Catastrophe. Planck's Law of Blackbody Radiation: Experimental Verification. Deduction of (1) Wien's Distribution Law, (2) Rayleigh-Jeans Law, (3) Stefan-Boltzmann Law, (4) Wien's Displacement law from Planck's law. (13 Lectures)

Unit-III

Quantum Statistics: Identical particles, macrostates and Bose Einstein distribution function and Fermi-Dirac

micro states. Fermions and Bosons, Distribution function. Bose-Einstein

Condensation, Bose deviation from Planck's law, Effect of temperature on F-D distribution function, degenarate Fermigas, Density of States, Fermi energy. (13 Lectures)

Reference Books:

- Statistical Mechanics-R.K.Pathria & Paul D. Beale (Academic Press) 3rd Edition (2011)
- Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill
- Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall
- Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press.
- An introduction to Equilibrium Statistical Mechanics: Palash Das (I.K.International Publication) 2012
- •Statistical Physics -- F. Mandl (CBS) 2012
- •Statistical Physics of Particles-M. Kardar (CUP 2007)

PHYSICS PRACTICAL-C XIV LAB

20 Classes (2hr duration)

Use C/C++/Scilab for solving the problems based on Statistical Mechanics like

- 1.Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleigh-Jeans Law at high temperature (room temperature) and low temperature.
- 2.Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution function, (c) Debye distribution function for high temperature (room temperature) and low temperature and compare them for these two cases
- 3. Plot Maxwell-Boltzmann distribution function versus temperature.
- 4. Plot Fermi-Dirac distribution function versus temperature.
- 5. Plot Bose-Einstein distribution function versus temperature.

Reference Books:

- Elementary Numerical Analysis, K.E.Atkinson, 3 rd Edn. 2007, Wiley India Edition
- Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.
- Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.
- Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer
- Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific and Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández. 2014 Springer ISBN: 978-3319067896
- Scilab by example: M. Affouf, 2012. ISBN: 978-1479203444
- Scilab Image Processing: L.M.Surhone. 2010, Betascript Pub., ISBN: 978-6133459274

PHYSICS-DSE (Discipline Specific Elective): (4 papers including the Project) DSE-1 to DSE-4 (6 Credits each)

CLASSICAL DYNAMICS

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

The emphasis of the course is on applications in solving problems of interest to physicists. Students are to be examined on the basis of problems, seen and unseen.

Unit-I

Classical Mechanics of Point Particles: Generalised coordinates and velocities. Hamilton's Principle, Lagrangian and Euler-Lagrange equations. Applications to simple systems such as coupled oscillators. Canonical momenta & Hamiltonian. Hamilton's equations of motion. Applications: Hamiltonian for a harmonic oscillator, particle in a central force field. Motion of charged particles in external electric and magnetic fields. (25 Lectures)

Unit-II

Special Theory of Relativity: Postulates of Special Theory of Relativity. Lorentz Transformations. Minkowski space. The invariant interval, light cone and world lines. Spacetime diagrams. Time-dilation, length contraction & twin paradox. Four-vectors: space-like, time-like & light-like. Four-velocity and acceleration. Metric and alternating tensors. Four-momentum and energy-momentum relation. Doppler effect from a four vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. **(25 Lectures)**

Reference Books:

- Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
- Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
- Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.
- Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press
- •Classical Mechanics-J. C.Upadhyay (Himalaya Publication) 2014
- •Classical Dynamics of Particles and Systems S. T. Thornton (Cengage Learning) 2012
- •Introduction to Classical Mechanics-R. K. Takwale, S.Puranik-(Tata Mc Graw Hill)
- Classical Mechanics-M. Das, P.K.Jena, M. Bhuyan, R.N.Mishra (Srikrishna Prakashan)

PHYSICS-DSE: Nuclear and Particle Physics (Credits: Theory-05, Tutorials-01)

Theory: 50 Classes (1hr duration)

Unit-I

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model,

Radioactivity decay:(a) Alpha decay: basics of α -decay processes, theory of α - emission, Gamow factor, Geiger Nuttall law. (b) β -decay: energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis. (c) Elementary idea of Gamma decay.

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value,

(25 Lectures)

Unit-II

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

Particle Accelerators: Van-de Graaff generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm. Elementary ideas of quarks and gluons.

(25 Lectures)

Reference Books:

- Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).
- Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).
- Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
- Basic ideas and concepts in Nuclear Physics An Introductory Approach by K. Heyde (IOP-Institute of Physics Publishing, 2004).
- Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991)
- Atomic and Nuclear Physics -A. B. Gupta, Dipak Ghosh. (Books and Allied Publishers)
- Physics of Atoms and Molecules Bransden (Pearson India) 2003
- •. Subatomic Physics Henley and Gracia (World Scientific) 2012
- •Introduction to Nuclear and Particle Physics-A.Das and T.Ferbel (World Scientific)
- •Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

COMPUTATIONAL PHYSICS

(Credits: Theory-05, Tutorials-01) Theory: 50 Classes (1hr duration)

The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics.

- Highlights the use of computational methods to solve physical problems
- *Use of computer language as a tool in solving physics problems (applications)*
- Course will consist of hands on training on the Problem solving on Computers.

Unit-I

Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. **Algorithms and Flowcharts:** Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal.

Scientific Programming: Some fundamental Linux Commands (Internal and External commands). Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declaration and concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. Fortran Statements: I/O Statements (unformatted/formatted), Executable and Non-Executable Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic. Examples from physics problems.

(25Lectures)

Unit-II

Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DOWHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems.

Programming:

- 1. Exercises on syntax on usage of FORTRAN
- 2. To print out all natural even/odd numbers between given limits.
- 3. To find maximum, minimum and range of a given set of numbers. 4.To find a set of prime numbers and Fibonacci series

(25 Lectures)

Reference Books:

- Introduction to Numerical Analysis, S.S. Sastry, 5th Edn., 2012, PHI Learning Pvt. Ltd.
- Computer Programming in Fortran 77". V. Rajaraman (Publisher: PHI).
- Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986Mc-Graw Hill Book Co.
- Computational Physics: An Introduction, R. C. Verma, et al. New Age International Publishers, New Delhi(1999)
- A first course in Numerical Methods, U.M. Ascher and C. Greif, 2012, PHI Learning
- Elementary Numerical Analysis, K.E. Atkinson, 3 rd Edn., 2007, Wiley India Edition.

PHYSICS-DSE: Nano Materials and Applications

(Credits: Theory-05, Tutorial-01) Theory: 50 Classes (1hr duration)

Unit-I

Nanoscale Systems: Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin films, nanowires, nanorods), Band structure and density of states of materials at nanoscale, Size Effects in nano systems, Quantum confinement: Applications of Schrodinger equation- Infinite potential well, potential step, potential box, quantum confinement of carriers in 3D, 2D, 1D nanostructures and its consequences.

Synthesis Of Nanostructure Materials: Top down and Bottom up approach, Photolithography. Ball milling. Gas phase condensation. Vacuum deposition. Physical vapor deposition (PVD): Thermal evaporation, E-beam evaporation, Pulsed Laser deposition. Chemical vapor deposition (CVD). Sol-Gel. Electro deposition. Spray pyrolysis. Hydrothermal synthesis. Preparation through colloidal methods. MBE growth of quantum dots.

(25 Lectures)

Unit-II

Characterization: X-Ray Diffraction. Optical Microscopy. Scanning Electron Microscopy. Transmission Electron Microscopy. Atomic Force Microscopy. Scanning Tunneling Microscopy. Applications: Applications of nanoparticles, quantum dots, nanowires and thin films for photonic devices (LED, solar cells). Single electron devices (no derivation). CNT based transistors. Nanomaterial Devices: Quantum dots heterostructure lasers, optical switching and optical data storage. Magnetic quantum well; magnetic dots - magnetic data storage. Micro Electromechanical Systems (MEMS), Nano Electromechanical Systems (NEMS).

(25 Lectures)

Reference books:

- 1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt. Ltd.).
- 2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company)
- 3. K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and Technology (PHI Learning Private Limited).
- 4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).
- 5. M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology Handbook (Elsevier, 2007).

- 6. Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin, 2004).
- 7. Nanotechnology- Rakesh Rathi (S Chand & Company, New Delhi)

PHYSICS-DSE: Bio-Physics

(Credits: Theory-05, Tutorials-01) Theory: 50 Classes (1hr duration)

Unit-I

Building Blocks & Structure of Living State: Atoms and ions, molecules essential forblife, what is life. **Living state interactions:** Forces and molecular bonds, electric &bthermal interactions, electric dipoles, casimir interactions, domains of physics in biology.

Heat Transfer in biomaterials: Heat Transfer Mechanism, The Heat equation, Joule heating of tissue. **Living State Thermodynamics:** Thermodynamic equilibrium, first law of thermodynamics and conservation of energy. Entropy and second law of thermodynamics, Physics of many particle systems, Two state systems, continuous energy distribution, Composite systems, Casimir contribution of free energy, Protein folding and unfolding.

(25 Lectures)

Unit-II

Open systems and chemical thermodynamics: Enthalpy, Gibbs Free Energy and chemical potential, activation energy and rate constants, enzymatic reactions, ATP hydrolysis & synthesis, Entropy of mixing, The grand canonical ensemble, Hemoglobin.

Diffusion and transport Maxwell-Boltzmann statistics, Fick's law of diffusion, sedimentation of Cell Cultures, diffusion in a centrifuge, diffusion in an electric field, Lateral diffusion in membranes, Navier stokes equation, low Reynold's Number Transport, Active and passive membrane transport.

Fluids: Laminar and turbulent fluid flow, Bernoulli's equation, equation of continuity, venture effect, Fluid dynamics of circulatory systems, capillary action.

Bioenergetics and Molecular motors: Kinesins, Dyneins, and microtubule dynamics, Brownian motion, ATP synthesis in Mitochondria, Photosynthesis in Chloroplasts, Light absorption in biomolecules, vibrational spectra of bio-biomolecules.

(25Lectures)

Reference Books:

- Introductory Biophysics, J. Claycomb, JQP Tran, Jones & Bartelett Publishers
- Aspects of Biophysics, Hughe S W, John Willy and Sons.
- Essentials of Biophysics by P Narayanan, New Age International
- Molecular Biophysics- P.K.Banarjee (S. Chand Publication) 2014.
- •. Essentials of Biophysics: P. Narayanan, (New Age International, New Delhi) 2005.
- •. Biophysics: An introduction: Rodney Cotterill, John Wiley and Sons Ltd, 2002.
- •.Biophysics- Dr.G.R.Chatwal (Himalaya Pub.)2011

PHYSICS-DSE: Project (Credits: 06) (Compulsory)

Skill Enhancement Course (2) (Credit: 02 each)- SEC-1 and SEC-2

1. Communicative English and English Writing Skill (Compulsory)

(Credits: 02)

Theory: 20 Classes (1hr duration)

2.BASIC INSTRUMENTATION SKILLS

(**Credits: 02**)

Theory: 20 Classes (1hr duration)

This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.

Unit-I

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. **Multimeter:** Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance.

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance.

AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance.

Cathode Ray **Oscilloscope:** Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only— no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.

(10 Lectures)

Unit-II

Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis.

Digital Instruments: Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter.

Digital Multimeter: Block diagram and working of a digital multimeter. Working principle of time interval, frequency and period measurement using universal counter/ frequency counter, time-base stability, accuracy and resolution.

(10 Lectures)

The test of lab skills will be of the following test items:

- 1. Use of an oscilloscope.
- 2. CRO as a versatile measuring device.
- 3. Circuit tracing of Laboratory electronic equipment,
- 4. Use of Digital multimeter/VTVM for measuring voltages
- 5. Circuit tracing of Laboratory electronic equipment,
- 6. Winding a coil / transformer.
- 7. Study the layout of receiver circuit.
- 8. Trouble shooting a circuit
- 9. Balancing of bridges

Laboratory Exercises:

- 1. To observe the loading effect of a multimeter while measuring voltage across a low resistance and high resistance.
- 2. To observe the limitations of a multimeter for measuring high frequency voltage and currents.
- 3. To measure Q of a coil and its dependence on frequency, using a Q-meter.
- 4. Measurement of voltage, frequency, time period and phase angle using CRO.
- 5. Measurement of time period, frequency, average period using universal counter/ frequency counter.
- 6. Measurement of rise, fall and delay times using a CRO.
- 7. Measurement of distortion of a RF signal generator using distortion factor meter.
- 8. Measurement of R, L and C using a LCR bridge/ universal bridge.

Open Ended Experiments:

- 1. Using a Dual Trace Oscilloscope
- 2. Converting the range of a given measuring instrument (voltmeter, ammeter)

Reference Books:

- A text book in Electrical Technology B L Theraja S Chand and Co.
- Performance and design of AC machines M G Say ELBS Edn.
- Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.
- Logic circuit design, Shimon P. Vingron, 2012, Springer.
- Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata McGraw Hill
- Electronic circuits: Handbook of design and applications, U. Tietze, Ch. Schenk, 2008, Springer
- Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India

3.RENEWABLE ENERGY AND ENERGY HARVESTING

(**Credits: 02**)

Theory: 20 Classes (1hr duration)

The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible

Unit-I

Fossil fuels and Alternate Sources of energy: Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.

Solar energy: Solar energy, its importance, storage of solar energy, solar pond, non plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.

(10 Lectures)

Unit-II

Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid interconnection topologies.

Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices.

Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass.

Geothermal Energy: Geothermal Resources, Geothermal Technologies.

Hydro Energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

(10 Lectures)

Reference Books:

- Non-conventional energy sources G.D Rai Khanna Publishers, New Delhi
- Solar energy M P Agarwal S Chand and Co. Ltd.
- Solar energy Suhas P Sukhative Tata McGraw Hill Publishing Company Ltd.
- Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
- Dr. P Jayakumar, Solar Energy: Resource Assesment Handbook, 2009
- J.Balfour, M.Shaw and S. Jarosek, Photovoltaics, Lawrence J Goodrich (USA).
- http://en.wikipedia.org/wiki/Renewable_energy

4.APPLIED OPTICS

(Credits: 02)

THEORY: 20 Classes (1hr duration)

Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.

Unit-I

Sources and Detectors: Lasers, Spontaneous and stimulated emissions, Theory of laser action, Einstein's coefficients, Light amplification, Characterization of laser beam, He-Ne laser, Semiconductor lasers.

Elementary ideas of Fourier Optics

Concept of Spatial frequency filtering, Fourier transforming property of a thin lens.

(10 Lectures)

Unit-II

Holography

Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition

Photonics: Fibre Optics

Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating.

(10 Lectures)

Reference Books:

- Fundamental of optics, F. A. Jenkins & H. E. White, 1981, Tata McGraw hill.
- •LASERS: Fundamentals & applications, K.Thyagrajan & A.K.Ghatak, 2010, Tata McGraw Hill
- Fibre optics through experiments, M.R.Shenoy, S.K.Khijwania, et.al. 2009, Viva Books
- Nonlinear Optics, Robert W. Boyd, (Chapter-I), 2008, Elsevier.
- Optics, Karl Dieter Moller, Learning by computing with model examples, 2007, Springer.
- Optical Systems and Processes, Joseph Shamir, 2009, PHI Learning Pvt. Ltd.
- Optoelectronic Devices and Systems, S.C. Gupta, 2005, PHI Learning Pvt. Ltd.
- Optical Physics, A.Lipson, S.G.Lipson, H.Lipson, 4th Edn., 1996, Cambridge Univ. Press.
- Optics E.Hecht, (Pearson India)

Generic Elective Papers (GE) (Minor-Physics) (any two) for other <u>Departments/Disciplines: (Credit: 06 each)</u>

GE: MECHANICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Vectors: Vector algebra. Scalar and vector products. Derivatives of a vector with respect to a parameter. (2 Lectures)

Ordinary Differential Equations: 1st order homogeneous differential equations. 2nd order homogeneous differential equations with constant coefficients. (2 Lectures)

Laws of Motion: Frames of reference. Newton's Laws of motion. Dynamics of a system of particles. Centre of Mass. (4 Lectures)

Momentum and Energy: Conservation of momentum. Work and energy. Conservation of energy. Motion of rockets. (2 Lectures)

Rotational Motion: Angular velocity and angular momentum. Torque. Conservation of angular momentum. (3 Lectures)

Gravitation: Newton's Law of Gravitation. Motion of a particle in a central force field (motion is in a plane, angular momentum is conserved, areal velocity is constant). Kepler's Laws (statement only). Satellite in circular orbit and applications. Geosynchronous orbits. Basic idea of global positioning system (GPS). Weightlessness. Physiological effects on astronauts.

(7Lectures)

UNIT-II

Oscillations: Simple harmonic motion. Differential equation of SHM and its solutions. Kinetic and Potential Energy, Total Energy and their time averages. Damped oscillations. (6 Lectures)

Elasticity: Hooke's law - Stress-strain diagram - Elastic moduli-Relation between elastic constants - Poisson's Ratio-Expression for Poisson's ratio in terms of elastic constants - Work done in stretching and work done in twisting a wire - Twisting couple on a cylinder - Determination of Rigidity modulus by static torsion - Torsional pendulum-Determination of Rigidity modulus and moment of inertia - q, η and σ by Searles method. (8 Lectures)

Special Theory of Relativity: Constancy of speed of light. Postulates of Special Relativity. Length contraction. Time dilation. Relativistic addition of velocities. (6 Lectures)

Note: Students are not familiar with vector calculus. Hence all examples involve differentiation either in one dimension or with respect to the radial coordinate

Reference Books:

- University Physics. F.W. Sears, M.W. Zemansky and H.D. Young, 13/e, 1986. Addison-Wesley
- Mechanics Berkeley Physics, Vol..1: Charles Kittel, et. al. 2007, Tata McGraw-Hill.
- Physics Resnick, Halliday & Walker 9/e, 2010, Wiley
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- Properties of Matter D.S. Mathur (S.Chand publication) 2013
- Mechanics- D.C. Tayal (Himalaya Publication) 2013
- Classical Dynamics of Particles and Systems –S. T. Thornton (Cengage Learning) 2012
- Analytical Mechanics-Fowles (Cengage Learnings) 2014
- •Classical Mechanics-M.Das, P.K.Jena, M.Bhuyan and R.N.Mishra (Srikrishna Publication)

.....

PHYSICS LAB: GE LAB: MECHANICS 20 Classes (2hr duration)

- 1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.
- 2. To determine the Height of a Building using a Sextant.
- 3. To determine the Moment of Inertia of a Flywheel.
- 4. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 5. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 6. To determine the Elastic Constants of a Wire by Searle's method.
- 7. To determine g by Bar Pendulum.
- 8. To determine g by Kater's Pendulum.
- 9. To study the Motion of a Spring and calculate (a) Spring Constant, (b) g.

Reference Books:

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

GE: ELECTRICITY, MAGNETISM AND EMT

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Vector Analysis: Scalar and Vector product, gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gauss-divergence theorem and Stoke's theorem of vectors (statement only). **(8 Lectures)**

Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line

integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric. (12 Lectures)

UNIT-II

Magnetism:

Magnetostatics: Biot-Savart's law and its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field. Magnetic vector potential. Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para-and ferromagnetic materials. (6 Lectures) Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.

(4 Lectures)

Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectric medium, transverse nature of EM waves, polarization. (10 Lectures)

Reference Books:

- Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education
- Electricity & Magnetism, J.H. Fewkes & J. Yarwood. Vol. I, 1991, Oxford Univ. Press
- Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing House.
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- D.J.Griffiths, Introduction to Electrodynamics, 3rd Edn, 1998, Benjamin Cummings.
- •Electricity and Magnetism- K.K Tewari (S. Chand Higher Academics)2013

GE LAB: ELECTRICITY, MAGNETISM AND EMT 20 Classes (2hr duration)

- 1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current, and (d) checking electrical fuses.
- 2. Ballistic Galvanometer:
- (i) Measurement of charge and current sensitivity
- (ii) Measurement of CDR
- (iii) Determine a high resistance by Leakage Method
- (iv) To determine Self Inductance of a Coil by Rayleigh's Method.
- 3. To compare capacitances using De'Sauty's bridge.
- 4. Measurement of field strength B and its variation in a Solenoid (Determine dB/dx)
- 5. To study the Characteristics of a Series RC Circuit.
- 6. To study a series LCR circuit LCR circuit and determine its (a) Resonant frequency, (b) Quality factor
- 7. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q
- 8. To determine a Low Resistance by Carey Foster's Bridge.
- 9. To verify the Thevenin and Norton theorems

Reference Books

- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed.2011, Kitab Mahal

GE: THERMAL PHYSICS AND STATISTICAL MECHANICS (Credits: Theory-04, Practicals-02)

Theory: 40 Classes (1hr duration)

UNIT-I

Laws of Thermodynamics: Thermodynamic Description of system: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various Thermodynamical Processes, Applications of First Law: General Relation between CP and Cv, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Coefficient, Reversible and irreversible processes, Second law and Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes, Entropy-temperature diagrams, Third law of thermodynamics, Unattainability of absolute zero. (10 Lectures)

Thermodynamical Potentials: Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations and applications - Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP – Cv), CP/Cv, TdS equations. (10 Lectures)

UNIT-II

Kinetic Theory of Gases: Derivation of Maxwell's law of distribution of velocities and its experimental verification, Mean free path (Zeroth Order), Transport Phenomena: Viscosity, Conduction and Diffusion (for vertical case), Law of equipartition of energy (no derivation) and its applications to specific heat of gases; mono-atomic and diatomic gases. (10 Lectures) Theory of Radiation: Blackbody radiation, Spectral distribution, Concept of Energy Density,

Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh- Jeans Law, Stefan Boltzmann Law and Wien's displacement law from Planck's law. (6 Lectures) Statistical Mechanics: Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Phase space - Fermi-Dirac distribution law - electron gas - Bose-Einstein distribution law - photon gas - comparison of three statistics. (4 Lectures)

Reference Books:

- Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
- A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.
- Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.

- Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W.Sears and G.L. Salinger. 1988, Narosa
- University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
- •Thermal and Statistical Physics --- M. Das , P. K. Jena and others (Sri Krishna Prakashan)
- •Heat and Thermal Physics-Brijlal & Subramaiam (S.Chand Publication) 2014
- •Thermal Physics-- C. Kittel and H. Kroemer (McMillan Education India) 2010
- •Thermodynamics & Statistical Physics-J.K.Sharma, K.K.Sarkar (Himalaya Pub.)2014

GE LAB: THERMAL PHYSICS AND STATISTICAL MECHANICS 20 Classes (2hr duration)

- 1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow method.
- 2. Measurement of Planck's constant using black body radiation.
- 3. To determine Stefan's Constant.
- 4. To determine the coefficient of thermal conductivity of Cu by Searle's Apparatus.
- 5. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom's Method.
- 6.To determine the coefficient of thermal conductivity of a bad conductor by Lee and Charlton's disc method.
- 7. To determine the temperature co-efficient of resistance by Platinum resistance thermometer.
- 8. To study the variation of thermo emf across two junctions of a thermocouple with temperature.
- 9. To record and analyze the cooling temperature of an hot object as a function of time using a thermocouple and suitable data acquisition system
- 10. To calibrate Resistance Temperature Device (RTD) using Null Method/Off- Balance Bridge **Reference Books:**
- Advanced Practical Physics for students, B.L.Flint & H.T.Worsnop, 1971, Asia Publishing House.
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.
- •A Laboratory Manual of Physics for Undergraduate Classes, D.P.Khandelwal,1985, Vani Publication.

GE: WAVES AND OPTICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

UNIT-I

Fluids: Surface Tension: Synclastic and anticlastic surface - Excess of pressure - Application to spherical and cylindrical drops and bubbles - variation of surface tension with temperature - Jaegar's method. Viscosity - Rate flow of liquid in a capillary tube - Poiseuille's formula - Determination of coefficient of viscosity of a liquid - Variations of viscosity of liquid with temperature- lubrication. (6 Lectures)

Sound: Simple harmonic motion - forced vibrations and resonance - Fourier's Theorem - Application to saw tooth wave and square wave - Intensity and loudness of sound - Decibels - Intensity levels - musical notes - musical scale. Acoustics of buildings: Reverberation and time of reverberation - Absorption coefficient - Sabine's formula - measurement of reverberation time - Acoustic aspects of halls and auditoria. **(6 Lectures)**

Superposition of Two Perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses. (2 Lectures)

Waves Motion- General: Transverse waves on a string. Travelling and standing waves on a string. Normal Modes of a string. Group velocity, Phase velocity. Plane waves. Spherical waves, Wave intensity. (2 Lectures) Wave Optics: Electromagnetic nature of light. Definition and Properties of wave front. Huygens Principle. (2 Lectures)

UNIT-II

Interference: Interference: Division of amplitude and division of wavefront. Young's Double Slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: measurement of wavelength and refractive index. (10 Lectures)

Michelson's Interferometer: (1) Idea of form of fringes (no theory needed), (2) Determination of wavelength, (3) Wavelength difference, (4) Refractive index, and (5) Visibility of fringes.

(2 Lectures)

Diffraction: Fraunhofer diffraction- Single slit; Double Slit. Multiple slits and Diffraction grating. Fresnel Diffraction: Half-period zones. Zone plate. Fresnel Diffraction pattern of a straight edge, a slit and a wire using half-period zone analysis. (**7 Lectures**)

Polarization: Transverse nature of light waves. Plane polarized light – production and analysis. Circular and elliptical polarization. (3 Lectures)

Reference Books:

- Fundamentals of Optics, F.A Jenkins and H.E White, 1976, McGraw-Hill
- Principles of Optics, B.K. Mathur, 1995, Gopal Printing
- Fundamentals of Optics, H.R. Gulati and D.R. Khanna, 1991, S. Chand Publications
- University Physics. F.W. Sears, M.W. Zemansky and H.D. Young. 13/e, 1986. Addison-Wesley

GE LAB: WAVES AND OPTICS

20 Classes (2hr duration)

- 1. To investigate the motion of coupled oscillators
- 2. To determine the Frequency of an Electrically Maintained Tuning Fork by Melde's Experiment and to verify $\lambda_2 T$ Law.
- 3. To study Lissajous Figures
- 4. Familiarization with Schuster's focussing; determination of angle of prism.
- 5. To determine the Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).

- 6. To determine the Refractive Index of the Material of a Prism using Sodium Light.
- 7. To determine Dispersive Power of the Material of a Prism using Mercury Light
- 8. To determine the value of Cauchy Constants.
- 9. To determine the Resolving Power of a Prism.
- 10. To determine wavelength of sodium light using Fresnel Biprism.
- 11. To determine wavelength of sodium light using Newton's Rings.
- 12. To determine the wavelength of Laser light using Diffraction of Single Slit.
- 13.To determine wavelength of (1) Sodium and (2) Spectral lines of the Mercury light using plane diffraction Grating
- 14. To determine the Resolving Power of a Plane Diffraction Grating.
- 15.To measure the intensity using photosensor and laser in diffraction patterns of single and double slits.

Reference Books:

- Advanced Practical Physics for students, B.L. Flint and H.T.Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

GE: ELEMENTS OF MODERN PHYSICS

(Credits: Theory-04, Practicals-02) Theory:

40 Classes (1hr duration)

UNIT-I

Planck's quantum, Planck's constant and light as a collection of photons; Photoelectric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. (6 Lectures)

Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra. (4 Lectures)

Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle; Energy-time uncertainty principle. (4 Lectures)

Two slit interference experiment with photons, atoms & particles; linear superposition principle as a consequence; Matter waves and wave amplitude; Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of wavefunction, probabilities and normalization; Probability and probability current densities in one dimension. (8 Lectures)

UNIT-II

One dimensional infinitely rigid box- energy eigenvalues and eigenfunctions, normalization; Quantum dot as an example; Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier. (8 Lectures)

Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in nucleus as a consequence of the uncertainty principle. Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy. (4 Lectures)

Radioactivity: stability of nucleus; Law of radioactive decay; Mean life and half-life; α decay; β decay - energy released, spectrum and Pauli's prediction of neutrino; γ -ray emission.

(4 Lectures)

Fission and fusion - mass deficit, relativity and generation of energy; Fission - nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons interacting with Uranium 235; Fusion and thermonuclear reactions. (2 Lectures)

Reference Books:

- Concepts of Modern Physics, Arthur Beiser, 2009, McGraw-Hill
- Modern Physics, J.R. Taylor, C.D. Zafiratos, M.A. Dubson, 2009, PHI Learning
- Six Ideas that Shaped Physics:Particle Behave like Waves, Thomas A. Moore, 2003, McGraw Hill
- Quantum Physics, Berkeley Physics, Vol.4. E.H. Wichman, 2008, Tata McGraw-Hill Co.
- Modern Physics, R.A. Serway, C.J. Moses, and C.A.Moyer, 2005, Cengage Learning

GE LAB: ELEMENTS OF MODERN PHYSICS 20 Classes (2hr duration)

- 1. To determine value of Boltzmann constant using V-I characteristic of PN diode.
- 2. To determine work function of material of filament of directly heated vacuum diode.
- 3. To determine the ionization potential of mercury.
- 4. To determine value of Planck's constant using LEDs of at least 4 different colours.
- 5. To determine the wavelength of H-alpha emission line of Hydrogen atom.
- 6. To determine the absorption lines in the rotational spectrum of Iodine vapour.
- 7. To study the diffraction patterns of single and double slits using laser and measure its intensity variation using Photosensor & compare with incoherent source Na.
- 8. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light
- 9. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.
- 10. To setup the Millikan oil drop apparatus and determine the charge of an electron.

Reference Books:

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.

·

GE: SOLID STATE PHYSICS

(Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

Prerequisites: Knowledge of "Elements of Modern Physics"

UNIT-I

Crystal Structure: Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors. Lattice with a Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Reciprocal Lattice. Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Bragg's Law. Atomic and Geometrical Factor. **(8 Lectures)**

Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T³ law (6 Lectures)

Magnetic Properties of Matter: Dia-, Para-, Ferri- and Ferromagnetic Materials. Classical Langevin Theory of dia – and Paramagnetic Domains. Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss. (8 Lectures)

UNIT-II

Dielectric Properties of Materials: Polarization. Local Electric Field at an Atom. Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theory of Electric Polarizability. Normal and Anomalous Dispersion. Cauchy and Sellmeir relations. Langevin-Debye equation. Complex Dielectric Constant. Optical Phenomena. Application: Plasma Oscillations, Plasma Frequency, Plasmons. (6 Lectures)

Elementary band theory: Kronig Penny model. Band Gaps. Conductors, Semiconductors and insulators. P and N type Semiconductors. Conductivity of Semiconductors, mobility, Hall Effect, Hall coefficient. (6 Lectures)

Superconductivity: Experimental Results. Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. (6 Lectures)

Reference Books:

- Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
- Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
- Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning
- Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
- Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India
- Solid State Physics, M.A. Wahab, 2011, Narosa Publications

GE LAB: SOLID STATE PHYSICS

20 Classes (2hr duration)

- 1. Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method)
- 2. To measure the Magnetic susceptibility of Solids.
- 3. To determine the Coupling Coefficient of a Piezoelectric crystal.
- 4. To measure the Dielectric Constant of a dielectric Materials with frequency
- 5. To determine the complex dielectric constant and plasma frequency of metal using Surface Plasmon resonance (SPR)
- 6. To determine the refractive index of a dielectric layer using SPR
- 7. To study the PE Hysteresis loop of a Ferroelectric Crystal.
- 8. To study the BH curve of iron using a Solenoid and determine the energy loss.
- 9. To measure the resistivity of a semiconductor (Ge) crystal with temperature by fourprobe method (room temperature to 150 oC) and to determine its band gap.
- 10. To determine the Hall coefficient of a semiconductor sample.

Reference Books

- Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
- Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn., 2011, Kitab Mahal
- Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India

PHYSICS-C II: MECHANICS (Credits: Theory-04, Practicals-02) Theory: 40 Classes (1hr duration)

- Determination of g by Bar Pendulum.
 Moment of Inertia of a rolling cylinder.
 η by (Poiseulli's method)
 Modulus of rigidity