KHALLIKOTE UNIVERSITY, BERHAMPUR-760001, ODISHA

SYLLABUS
U.G. (Botany)

2017

P.G.DEPARTMENT OF BOTANY

KHALLIKOTE AUTONOMOUS COLLEGE,

BERHAMPUR-760001, ODISHA

COURSE STRUCUTRE FOR UG SCIENCE UNDER CBCS

SEM	Core	AECC(2)	AECC(2)	DSE(4)	GE(4)	Credits	Marks
	course	Compulsory	Skill				
	(14)		Based				
	Α	В	С	D	E		
IS	CORE-1	MIL			GE-1	20	350
	CORE-2	(O/H/T/E)			Minor-1		
II S	CORE-3	EVS			GE-2	20	350
	CORE-4				Minor-2		
III S	CORE-5		SEC-I		GE-3	26	450
	CORE-6		Communic		Minor-1		
	CORE-7		ative				
			English				
			and				
			writing				
			Skill				
			(Comp.)				
IV S	CORE-8		SEC-II		GE-4	26	450
	CORE-9		Subject		Minor-2		
	CORE-10		Specific				
			Skill				
VS	CORE-11			DSE-1		24	400
	CORE-12			DSE-2			
VIS	CORE-13			DSE-3		24	400
	CORE-14			DSE-4			
TOT	84Credits/	04 credits	04 credits	24 credits	24credits	140	2400
AL	1400 marks	100 marks	100marks	400marks	400marks		

FOR SCIENCE COURSES

- A. Core course =Hons 14 papers 100x14 =1400 marks (56 credits)
- **B.** AECC (Ability Enhancement Compulsory Course)= MIL (O/H/T/E) AND EVS
- **C. SEC-1**: to be taught by English Department and **SEC-II** will be Adv.Biotech/Adv.Chem/Applied Phys/ Modern Math and not same as Core subject. Syllabus for SEC-II is to be prepared by Deptt./BOS for 50marks(40+10 marks) with four units, Exams. Will be for 2 hours duration.
- D. DSE 1 to 4: Spl. Hons, Papers to be selected from syllabus given by Utkal Univ. DSE-4 can be Research methodology/Theory/Practical/projects/field tour as decided by Deptt./BOS
- **E. GE-1 to 4** (two subjects, Minor-1&Minor-2)

Choose any two from Bot /Chem /Phys/Math/Zool. Expect Core Subject

Try to change the title of the course by keeping course content same .

Practicals in SemesterI, II, V and VI can be combined into one practical of 50 marks and 6 hr duration. For Semester III and IV, there can be one practical of 75 marks and 6hr duration.

DETAILED COURSE STRUCTURE FOR SCIENCE (BOTANY) underCBCS, 2017-18

SEMESTER	COURSE OPTED	COURSE NAME	CREDITS	MARKS
	Ability	MIL	02	50
	Enhancement	(O/H/T/E)		
	Course-I			
	CORE-1	Microbiology and phycology	04	75
	Theory			
FIRST	CORE-2	Biomolecules and Cell Biology	04	75
SEMESTER	Theory			
	PRACTICAL FOR	Microbiology and phycology	04	50
	CORE -1 AND CORE-	Biomolecules and Cell Biology		
	2			
	Generic Elective-I	Molecular Biology and	04+02	75+25
	Theory	Biodiversity of life		
	Practical			
FIRST SEMES	STER	TOTAL 20 c	redits 35	0 marks
	Ability	EVS	04	100
	Enhancement			
	Course-II			
	CORE-3	Mycology & Phytopathology	04	75
	Theory			
SECOND	CORE-4	Archegoniate	04	75
SEMESTER	Theory			
	PRACTICAL FOR	Mycology & Phytopathology	04	50
	CORE -3 AND CORE-	Archegoniate		
	4			
	Generic Elective-II	Diversities in Land Plants	04+02	75+25
	Theory			
	Practical			
SECOND SEN				0 marks
	CORE-5	Anatomy of angiosperm	04	75
	Theory			
	CORE-6	Economic Botany	04	75
	Theory			
	CORE 7	Conotics	04	75
	CORE-7	Genetics	04	/ 5
THIRD	Theory PRACTICAL FOR		06	75
THIRD	CORE -5, CORE-6		00	/3
SEMESTER	AND CORE-7			
	SEC-I	Communicative English 9	04	100
	SEC-1	Communicative English & writing Skill	04	100
	Generic Elective-III	Plant and human Welfare, Basic	04+02	75+25
	Theory	Biotechnology	04102	, 5, 25
	Practical	ыосеспноюду		
THIRD SEM	MESTER	TOTAL 28	credits	 500 marks
TITING JEIV	ILJ I LIX	IOIAL 20	cicuits .	Joo marks

IMPORTANT NOTE: About practical examinations

First semester: ONE Practical for CORE-1 and CORE-2 =50 marks (6 hr)

Second semester: ONE Practical for CORE-3 and CORE-4 =50 marks (6 hr)

Third semester: ONE Practical for CORE-5, CORE-6 and CORE-7 =75 marks (6 hr)

Fourth semester:ONE Practical for CORE-8, CORE_9 and CORE-10 =75 marks (6 hr)

Fifth semester: ONE Practical for CORE-11 and CORE-12 = 50 marks (6 hr)Sixth Semester: ONE Practical for CORE-13 and CORE-14 = 50 marks (6 hr)

SEMESTER	COURSE OPTED	COURSE NAME	CREDITS	MARKS
	CORE-8	Molecular Biology	04	75
	Theory			
	CORE-9	Ecology	04	75
	Theory			
	CORE-10	Plant Systematics	04	75
FOURTH	Theory			
SEMESTER	PRACTICAL FOR		06	75
	CORE -8, CORE-9			
	AND CORE-10			
	SEC-II	Applied Biotechnology	04	100
	Generic Elective-IV	Zoology - 02	04+02	75
	Theory			
	Practical			
FOURTH S	EMESTER	TOTAL 26c	redits 45	0 marks
	CORE-11	Reproductive Biology of	04	75
	Theory	Angiosperms		
	CORE-12	Plant Physiology	04	75
FIFTH Theory				
SEMESTER	PRACTICAL FOR		04	50

	CORE -11 AND			
	CORE-12			
	DSE-1	Natural resource	06	100
	Theory	management		
	Practical			
	DSE-2	Biostatistics	06	100
	Theory			
	Practical			
	PRACTICAL FOR DSE			
	-1 AND DSE-2			
FIFTH	SEMESTER	TOTAL 24cı	edits 40	0 marks
	CORE-13	Plant Metabolism	04	75
	Theory			
	Practical			
SIXTH	CORE-14	Plant Biotechnology	04	75
SEMESTER	Theory			
	Practical			
	PRACTICAL FOR		04	50
	CORE -13 AND			
	CORE-14			
	DSE-3	Stress Biology	06	100
	Theory			
	Practical			
	DSE-4		06	100
	:PROJECTS			
	SIXTH SEMES	TER TOTAL	2	4 credits 400
marks				

THEORY-75 marks (60 Term End+15 Internal Assessment)

THEORY-50 marks (40 Term End+10 Internal Assessment)

SEMESTER-I BOTANY CORE

Core Course I: Microbiology and Phycology 100 marks (Credits-6: Theory-4, Practical-2)

THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

UNIT –I	Introduction to microbial world	7 lectures
	Viruses:-Discovery, classification (Baltimore), general structure with special	
	reference to viroids and prions; replication (general account), DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV). Economic importance	
	of viruses	714
	Bacteria: - Discovery, general characteristics, types-archaebacteria, eubacteria, wall-less forms (mycoplasma and spheroplasts), cell structure, nutritional types, reproduction-vegetative, asexual and recombination (conjugation, transformation and transduction). Economic importance of bacteria	5 lectures
UNIT-II	Algae:- General characteristics; range of thallus organization; Cell structure and components; cell wall, pigment system, reserve food (of only groups represented in the syllabus), flagella; and methods of reproduction, classification; criteria, system of Fritsch, and evolutionary classification of Lee (only upto groups); significant contributions of important phycologists (F.E. Fritsch, G.M. Smith, T.V. Desikachary, M.O.P. Iyengar). Economic importance of algae.	6 lectures
UNIT- III	Cyanophyta:- Ecology and occurrence, range of thallus organization, cell	5 lectures
	structure, heterocyst, reproduction. Morphology and life-cycle of <i>Nostoc</i>	
	Chlorophyta:- General characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycles of <i>Chlamydomonas, Volvox, Oedogonium, Coleochaete</i> .	5 lectures
UNIT -IV	Charophyta:- General characteristics; occurrence, morphology, cell structure and life-cycle of <i>Chara</i> .	2 lectures
	Xanthophyta:- General characteristics; range of thallus organization;	3 lectures
	Occurrence, morphology and life-cycle of Vaucheria	
	Phaeophyta:- Characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycle of <i>Fucus</i>	3 lectures
	Rhodophyta:- General characteristics, occurrence, range of thallus	4 lectures
	organization, cell structure and reproduction. Morphology and life-cycle of <i>Polysiphonia</i> .	

PRACTICAL (20 CLASSES 2 HOURS EACH)

MICROBIOLOGY	1. Electron micrographs/Models of viruses - T-Phage and TMV, Line		
	drawings/Photographs of Lytic and Lysogenic Cycle.		
	2. Types of Bacteria to be observed from temporary/permanent		
	slides/photographs.		
	Electron micrographs of bacteria, binary fission, endospore, conjugation,		
	root Nodule.		
	3. Gram staining.		
	4.Endospore staining (endospores taken from soil bacteria)		
PHYCOLOGY	Study of vegetative and reproductive structures of <i>Nostoc</i> ,		
	Chlamydomonas ,Volvox, Oedogonium,Coleochaete, Chara, Vaucheria,		
	Ectocarpus, Fucus and Polysiphonia, temporary preparations and		
	permanent slides.		

Suggested Readings

- 1. Lee, R.E. (2008). Phycology, Cambridge University Press, Cambridge. 4th edition.
- 2. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition.
- 3. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West Press, Delhi.
- 4. Sahoo, D. (2000). Farming the ocean: seaweeds cultivation and utilization. Aravali International, NewDelhi.
- 5. Campbell, N.A., Reece J.B., Urry L.A., Cain M.L., Wasserman S.A. Minorsky P.V., Jackson R.B.(2008). Biology, Pearson Benjamin Cummings, USA. 8th edition.
- 6. Pelczar, M.J. (2001) Microbiology, 5th edition, Tata McGraw-Hill Co, New Delhi

SEMESTER-I

BOTANY CORE

<u>Core Course II:</u> Biomolecules and Cell Biology-100 marks(Credits-6:Theory-4,Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes

UNIT -I		2
01411 -1	Biomolecules:- Types and significance of chemical bonds; Structure and	lectures
	properties of water; pH and buffers.	icctures
	Carbohydrates: Nomenclature and classification; Role of monosaccharides	3
	(glucose, fructose, sugar alcohols - mannitol and sorbitol); Disaccharides	lectures
	(sucrose, maltose, lactose), Oligosaccharides and polysaccharides (structural-	
	cellulose, hemicelluloses, pectin, chitin, mucilage; storage -starch, insulin)	
	Lipids: Definition and major classes of storage and structural lipids. Storage	3
	lipids. Fatty acids structure and functions. Essential fatty acids. Triacylglycerols	lectures
	structure, functions and properties	icetai es
	Proteins: Structure of amino acids; Peptide bonds; Levels of protein structure-	3
	primary, secondary, tertiary and quarternary; Isoelectric point; Protein	lectures
	denaturation and biological roles of proteins	icetares
	Nucleic acids: Structure of nitrogenous bases; Structure and function of	4
	nucleotides; Types of nucleic acids; Structure of A, B, Z types of DNA; Types of	lectures
	RNA; Structure of tRNA	icciuics
UNIT-II	Bioenergenetics: Laws of thermodynamics, concept of free energy, endergonic	3
01111-11	and exergonic reactions, coupled reactions, redox reactions.ATP: structure, its	lectures
	role as a energy currency molecule.	icctures
	Enzymes: Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes	4
	and prosthetic group; Classification of enzymes; Features of active site, substrate	lectures
	specificity, mechanism of action (activation energy, lock and key hypothesis,	iccidics
	induced - fit theroy), Michaelis - Menten equation, enzyme inhibition and factors	
	affecting enzyme activity.	
UNIT-		2
III	Cell and Cell organelle: Cell as a unit of structure and function; Characteristics	lectures
	of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic	100001
	theory).	214
	Cell wall and plasma membrane:	3lectures
	Chemistry, structure and function of Plant Cell Wall. Overview of membrane	
	function; fluid mosaic model; Chemical composition of membranes; Membrane	
	transport - Passive, active and facilitated transport, endo cytosis and exocyosis.	4
	Cytoskeleton: Role and structure of microtubules, microfilaments and	4
	intermediary filament	lectures
	Chloroplast, mitochondria and peroxisomes: Structural organization;	
	Function; Semiautonomous nature of mitochondria and chloroplast.	
	Endoplasmic Reticulum, Golgi Apparatus, Lysosomes	2
		lectures
UNIT -	Nucleus; Structure-nuclear envelope, nuclear pore complex, nuclear lamina,	7
IV	molecular organization of chromatin; nucleolus.	lectures
	Cell division: Eukaryotic cell cycle, different stages of mitosis and meiosis.	
	Regulation of cell cycle.	

PRACTICALS(20 CLASES OF 2 hours duration)

PRACTICALS	1.Qualitative tests for carbohydrates, reducing sugars, non-reducing
	sugars, lipids and proteins
	2.Study of plant cell structure with the help of epidermal peel mount o
	Onion/Rhoeo/Crinum.f
	3.Demonstration of the phenomenon of protoplasmic streaming in <i>Hydrilla</i>
	leaf.
	4.Measurement of cell size by the technique of micrometry.
	5.Counting the cells per unit volume with the help of haemocytometer.
	(Yeast/pollen grains)
	6.Study of cell and its organelles with the help of electron micrographs.
	7.Study the phenomenon of plasmolysis and deplasmolysis.
	8.Study different stages of mitosis and meiosis using aceto carmine and
	aceto orcine methods

Suggested Readings

- 1. Campbell, MK (2012) Biochemistry, 7th ed., Published by Cengage Learning
- 2. Campbell, PN and Smith AD (2011) Biochemistry Illustrated, 4th ed., Published by Churchill Livingstone.
- 3. Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- 4. Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company
- 5. Nelson DL and Cox MM (2008) Lehninger Principles of Biochemistry, 5th Edition., W.H. Freemanand Company.
- 6. Karp, G. (2010). Cell Biology, John Wiley & Sons, U.S.A. 6th edition.
- 7. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc.U.S.A. 8th edition.
- 8. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. ASM Press &Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 9. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009 The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Fra

SEMESTER-II

BOTANY CORE

<u>Core Course III</u>: Mycology and Phytopathology – 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction to true fungi: Definition, General characteristics; 5 lectures Affinities with plants and animals; Thallus organization; Cellwall composition; Nutrition; Classification. Chytridiomycetes: General account Zygomycota: General characteristics; Ecology; Thallus organisation; 2 lectures Life cycle with reference to Rhizopus.
	Ascomycota: General characteristics (asexual and sexual fruiting bodies); Ecology; Life cycle, Heterokaryosis and parasexuality; life cycle and classification with reference to <i>Aspergillus</i> , <i>Penicillium</i> , <i>Alternaria</i> and <i>Neurospora</i> ,.
Unit-II	Basidiomycota: General characteristics; Ecology; Life cycle and Classification with reference to black stem rust on wheat <i>Puccinia</i> (Physiological Specialization), loose and covered smut (symptoms only), <i>Agaricus</i> ;.
	Oomycota: General characteristic; Ecology; Life cycle and classification with reference to <i>Phytophthora</i> .
Unit-III	Symbiotic associations: Lichen - General characteristics; range of thallus organization; Types of Lichen Nature of associations of algal and fungal partners; Reproduction. Mycorrhiza-Ectomycorrhiza, Endomycorrhiza and their significance.
	Applied Mycology: Role of fungi in biotechnology, Application of fungi in food industry (Baking, Organic acids, Enzymes, Mycoproteins); Secondary metabolites (Pharmaceutical preparations); Agriculture (Biofertilizers).
Unit-IV	Phytopathology: Terms and concepts; General symptoms; etiology; 7 lectures symptomology; Host- Pathogen interaction; disease cycle and environmental relation; prevention and control of plant diseases, and role of quarantine. Bacterial diseases - Citrus canker and angular leaf spot disease of Cotton. Viral diseases - Tobacco Mosaic disease, Vein clearing. Fungal diseases - Black stem rust of wheat, white rust of crucifers

PRACTICALS (20 CLASSES OF 2HOURS)

PRACTICALS

- 1. Introduction to the world of fungi (Unicellular, coenocytic/septate mycelium, asocarps &basidiocarps).
- 2. *Rhizopus:* study of asexual stage from temporary mounts and sexual structures through permanent slides.
- 3. Aspergillus and Penicillium: study of asexual stage from temporary mounts. Study of Sexual stage from permanent slides/photographs
- 4. Alternaria: Specimens/photographs and temporary mounts.
- 5. *Puccinia:* Herbarium specimens of Black Stem Rust of Wheat and infected Barberryleaves; sections/ mounts of spores on wheat and permanent slides of both the hosts.
- 6. Agaricus: Specimens of button stage and full grown mushroom; sectioning of gills of Agaricus, fairy rings and bioluminescent mushrooms to be shown.
- 7. Albugo: Study of symptoms of plants infected with Albugo; asexual phase study through section/ temporary mounts and sexual structures through permanent slides.
- 8. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose) on different substrates. Study of thallus and reproductive structures (soredia and apothecium) through permanent slides. Mycorrhizae: ectomycorrhiza and endo mycorrhiza (Photographs)

Suggested Readings

- 1. Agrios, G.N. 1997 Plant Pathology, 4th edition, Academic Press, U.K.
- 2. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley & Sons(Asia) Singapore. 4th edition.
- 3. Webster, J. and Weber, R. (2007). Introduction to Fungi, Cambridge University Press, Cambridge. 3rdedition.
- 4. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi and Their Allies, Macmillan Publishers IndiaLtd.
- 5. Sharma, P.D. (2011). Plant Pathology, Rastogi Publication, Meerut, Indi

SEMESTER-II

BOTANY CORE

<u>Core Course IV</u>: Archegoniate - 100 marks (Credits-6 Theory-4, Practical 2)

THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory +20 Practical classes]

Unit-I	Introduction: Unifying features of archegoniates; Transition to land 2 lectures
	habit; Alternation of generations. Types of life cycles, Sporophytic
	generation, gametophytic generation.
	Bryophytes: General characteristics; Adaptations to land habit; 12 lectures
	Classification; Range of thallus organization. Classification (up to
	family). Riccia, Marchantia, Pellia, Porella, Anthoceros, Sphagnum and
	Funaria; Reproduction and evolutionary trends in Riccia, Marchantia,
	Anthoceros and Funaria (developmental stages not included).
	Ecological and economic importance of bryophytes.
Unit-II	Pteridophytes: General characteristics, classification. Classification 10 lectures
	(up to family), morphology, anatomy and reproduction of Psilotum,
	Selaginella, Equisetum and Pteris.(Developmental details not to be
	included). Apogamy, and apospory, heterospory and seed habit, telome
	theory, stelar evolution. Ecological and economic importance.
Unit-III	Gymnosperms: General characteristics, classification (up to family), 8 lectures)
	morphology, anatomy and reproduction of Cycas, Pinus, Ginkgo and
	Gnetum. (Developmental details not to be included). Ecological and
	economic importance.
Unit-IV	Fossils: Geographical time scale, fossils and fossilization process. 8 lectures
	Morphology, anatomy and affinities of Rhynia, Calamites,
	Lepidodendron, Lyginopteris and Cycadeoidea.

PRACTICAL

Riccia - Morphology of thallus.

Marchantia- Morphology of thallus, whole mount of Gemmae (all temporary slides), longitudinal section of Sporophyte (all permanent slides).

Anthoceros- Morphology of thallus, dissection of sporophyte (temporary slide), vertical section of thallus (permanent slide).

Pellia, Porella- Permanent slides.

Sphagnum- Morphology of plant, whole mount of leaf (permanent slide only).

Funaria- Morphology, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridial and archegonial heads, and protonema.

.*Psilotum*- Study of specimen, transverse section of synangium (permanent slide). *Selaginella*- Morphology, whole mount of leaf with ligule, transverse section of stem, longitudinal section of strobilus (permanent slide).

Equisetum- Morphology, transverse section of internode, transverse section of strobilus, whole mount of sporangiophore, whole mount of spores (wet and dry) (temporary slide), transverse section of rhizome (permanent slides)

Pteris- Morphology, transverse section of rachis, transverse section of rhizome, whole mount of prothallus with sex organs and young sporophyte (permanent slide).

Cycas- Morphology (coralloid roots, bulbil, leaf), transverse section of coralloid root, transverse section of rachis, longitudinal section of ovule, transverse section of root (permanent slide).

Pinus- Morphology (long and dwarf shoots, whole mount of dwarf shoot, male and female cones), transverse section of Needle, transverse section of stemlongitudinal section of female cone, tangential longitudinal section & radial longitudinal sections stem (permanent slide).

Gnetum- Morphology (stem, male & female cones), transverse section of stem, vertical section of ovule (permanent slide)

Suggested Readings

- 1. Vashistha, P.C., Sinha, A.K., Kumar, A. (2010). Pteridophyta. S. Chand. Delhi, India.
- 2. Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, NewDelhi, India.
- 3. Parihar, N.S. (1991). An introduction to Embryophyta: Vol. I. Bryophyta. Central Book Depot. Allahabad.
- 4. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R. (2005). Biology. Tata McGraw Hill, Delhi.
- 5. Vander-Poorteri 2009 Introduction to Bryophytes. COP.

SEMESTER-III

BOTANY CORE

<u>Core Course V:</u> Anatomy of Angiosperms - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction and scope of Plant Anatomy: Applications in systematics,		
	forensics and pharmacognosy.		
	Tissues: Classification of tissues; Simple and complex tissues (no	8 Lectures	
	phylogeny); cytodifferentiation of tracheary elements and sieve		
	elements;Pits and plasmodesmata.		
	Secretory System: Hydathodes, cavities, lithocysts and laticifers.		
Unit-II	Stem: Organization of shoot apex (Apical cell theory, Histogen theory,	5 Lectures	
	Tunica Corpus theory); Types of vascular bundles; Structure of dicot and		
	monocot stem.		
	Leaf: Structure of dicot and monocot leaf, Kranz anatomy.	4 lectures	
	Root: Organization of root apex (Apical cell theory, Histogen theory,	4 Lectures	
	Korper-Kappe theory); Quiescentcentre; Root cap; Structure of dicot and		
	monocot root; Endodermis, exodermis and origin oflateral root.		
Unit-III	Vascular Cambium: Structure, function and seasonal activity of	4 Lectures	
	cambium; Secondary growth in root and stem.		
	Wood: Axially and radially oriented elements; Types of rays and axial	5 Lectures	
	parenchyma; Sapwood and heartwood; Ring and diffuse porous		
	wood; Early and late wood, tyloses; Dendrochronology.		
	Periderm: Development and composition of periderm, rhytidome and	3 Lectures	
	lenticels.		
Unit -IV	Adaptive and Protective Systems Epidermal tissue system, cuticle,	5 Lectures	
	epicuticular waxes, trichomes(uni-and multicellular, glandular and		
	nonglandular, two examples of each), stomata (classification);Anatomical		
	adaptations of xerophytes and hydrophytes.		
L			

PRACTICALS (20CLASSES OF 2 HOURS duration)

PRACTICALS

- 1. Study of anatomical details through permanent slides/temporary stainmounts/macerations/ museum specimens with the help of suitable examples.
- 2. Apical meristem of root, shoot and vascular cambium.
- 3. Distribution and types of parenchyma, collenchyma and sclerenchyma.
- 4. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibres.
- 5. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
- 6. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.
- 7. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.
- 8. Root: monocot, dicot, secondary growth.
- 9. Stem: monocot, dicot primary and secondary growth; periderm; lenticels.
- 10.Leaf: isobilateral, dorsiventral, C4 leaves (Kranz anatomy).
- 11. Adaptive Anatomy: xerophytes, hydrophytes.
- 12. Secretory tissues: cavities, lithocysts and laticifers.

Suggested Readings:

- 1. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA
- 4. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.

11 <u>SEMESTER-III</u> <u>BOTANY CORE</u>

<u>Core Course VI</u>: Economic Botany - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Origin of Cultivated Plants: Concept of Centres of Origin, their	3 lectures
	importance with reference to Vavilov's work. Examples of major plant	
	introductions; Crop domestication and loss of genetic diversity;	
	evolution of new crops/varieties, importance of germplasm diversty.	
	Cereals: Wheat and Rice (origin, morphology, processing & uses),	3 lectures
	brief account of millets.	
	Legumes: General account, importance to man and	3 lectures
	ecosystem.	
	Sugars & Starches: Morphology and processing of sugarcane,	3 lectures
	products and by-products of sugarcane industry. Potato - morphology,	
	propagation & uses.	
Unit-II	Spices: Listing of important spices, their family and part used,	4 lectures
	economic importance with specialreference to fennel, saffron, clove and	
	black pepper	
	Beverages: Tea, Coffee (morphology, processing	4 lectures
	&uses)	
	Drug-yielding plants: Therapeutic and habit-forming drugs with	4 lectures
	specialreference to Cinchona, Digitalis, Papaver and Cannabis.	
	Tobacco: Tobacco (Morphology, processing, uses and health hazards)	2 lectures
Unit-III	Oils & Fats: General description, classification, extraction, their uses	4 lectures
	and health implications groundnut, coconut, linseed and Brassica and	
	Coconut (Botanical name, family & uses)	
	Essential Oils: General account, extraction methods, comparison with	4 lectures
	fatty oils & their uses.	
Unit-IV	Natural Rubber: Para-rubber: tapping, processing and	2 lectures
	uses.	
	Timber plants: General account with special reference to teak and	2 Lectures
	pine.	
	Fibres: Classification based on the origin of fibres, Cotton and Jute	2 lectures
	(morphology, extraction and uses).	

12 <u>BOTANY CORE</u>

PRACTICALS (20 CLASSES OF 2 HOURS DURATION)

PRACTICALS

- **1. Cereals:** Rice (habit sketch, study of paddy and grain, starch grains, micro-chemical tests).
- **2. Legumes:** Soya bean, Groundnut, (habit, fruit, seed structure, microchemical tests).
- **3. Sugars & Starches:** Sugarcane (habit sketch; cane juice- microchemical tests),

Potato(habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, w.m. starch grains, micro-chemical tests).

- **4. Spices:** Black pepper, Fennel and Clove (habit and sections).
- **5. Beverages:** Tea (plant specimen, tea leaves), Coffee (plant specimen, beans).
- **6. Oils & Fats:** Coconut- T.S. nut, Mustard-plant specimen, seeds; tests for fats incrushedseeds.
- **7. Essential oil-yielding plants:** Habit sketch of *Rosa*, Vetiveria, Santalum and Eucalyptus (specimens/photographs).
- **8. Rubber:** specimen, photograph/model of tapping, samples of rubber products.
- **9. Drug-yielding plants:** Specimens of *Digitalis, PapaverandCannabis*.
- **10.Tobacco:** specimen and products of Tobacco.
- **11.Woods:** Tectona, Pinus: Specimen, Section of young stem.
- **12. Fibre-yielding plants:** Cotton (specimen, whole mount of seed to show lint andfuzz; whole mount of fibre and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fibre).

Suggested Readings

- 1. Kochhar, S.L. (2012). Economic Botany in Tropics, MacMillan & Co. New Delhi, India.
- 2. Wickens, G.E. (2001). Economic Botany: Principles & Practices. Kluwer Academic Publishers, The Netherlands.
- 3. Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones & Bartlett Publisher

13 <u>SEMESTER-III</u> <u>BOTANY CORE</u>

Core Course VII: Genetics - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Mendelian genetics and its extension Mendelism: History; Principles of 10 lectures
	inheritance; Chromosome theory of inheritance; Autosomes and sex
	chromosomes; Probability and pedigree analysis; Incomplete dominance
	and codominance; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy,
	Recessive and Dominant traits, Penetrance and Expressivity, Numericals;
	Polygenic inheritance.
Unit-II	Extrachromosomal Inheritance: Chloroplast mutation: Variegation in 6 lectures
	Four o'clock plant; Mitochondrial mutations in yeast; Maternal effects-
	shell coiling in snail; Infective heredity- Kappa particles in <i>Paramecium</i> .
Unit-III	Linkage, crossing over and chromosome mapping: Linkage and 12 lectures
	crossing over, cytological basis of crossing over; Types of crossing over,
	recombination frequency, two factor and three factor crosses; Interference
	and coincidence; Numericals based on gene mapping; Sex Linkage.
	Variation in chromosome number and structure: Deletion,
	Duplication, Inversion, Translocation, Euploidy and Aneuploidy
Unit-IV	Fine structure of gene: Classical vs molecular concepts of gene; Cis-12lectures
Unit-1 V	
	Trans complementation test for functional allelism; Structure of Phage
	T4, rII Locus.
	Gene mutations: Types of mutations; Molecular basis of Mutations;
	Mutagens - physical and chemical (Base analogs, deaminating, alkylating
	and intercalating agents); Detection of mutations: CIB method. Role of
	Transposons in mutation.DNA repair mechanisms.

PRACTICALS (20 CLASSES OF 2 HOURS DURATION)

PRACTICALS	1. Meiosis through temporary squash preparation.
	2. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-
	square analysis.
	3. Chromosome mapping using test cross data.
	4. Pedigree analysis for dominant and recessive autosomal and sex linked traits
	with floral chart.
	5. Incomplete dominance and gene interaction through seed ratios (9:7, 9:6:1,
	13:3, 15:1,
	12:3:1, 9:3:4).
	6. Blood Typing: ABO groups & Rh factor.

Suggested Readings:-

- 1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India.8th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics, John Wiley & Sons Inc., India. 5thedition.
- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.
- 4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W.H. Freeman and Co., U.S.A. 10th edition.

15 <u>SEMESTER-IV</u> <u>BOTANY CORE</u>

Core Course VIII: Molecular Biology - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

UNIT-I	Nucleic acids: Carriers of genetic information: Historical perspective; DNA as the carrier of genetic information (Griffith's, Hershey & Chase, Avery, McLeod & McCarty, Fraenkel-Conrat's experiment.	
UNIT-II	The Structures of DNA and RNA / Genetic Material: DNA Structure: Miescher to Watson and Crick- historic perspective, DNA structure, Salient features of double helix, .RNA Structure- Organelle DNA -mitochondria and chloroplast DNA.The Nucleosome - Chromatin structure-Euchromatin, Heterochromatin.	8 lectures
	The replication of DNA: Chemistry of DNA synthesis (Kornberg's discovery); General principles - bidirectional, semi-conservative and semi discontinuous replication, RNA priming; Various models of DNA replication, including rolling circle, θ (theta) mode of replication, replication of linear ds-DNA, Enzymes involved in DNA replication.	6 lectures
UNIT-III	Central dogma and genetic code: Key experiments establishing-The	2 lectures
	Central Dogma (Adaptor hypothesis and discovery of m RNA template), Genetic code (deciphering & salient features)	
	Mechanism of Transcription: Transcription in prokaryotes; Transcription in eukaryotes.	4 lectures
	Split genes-concept of introns and exons, RNA splicing and spliceosome machinery, splicing pathways, group I & group II intron splicing, alternative splicing eukaryotic mRNA processing(5' cap, 3' polyA tail); Ribozymes, exon shuffling.	5 lectures
UNIT-IV	Translation (Prokaryotes and eukaryotes): Ribosome structure and assembly, mRNA; Charging of tRNA, aminoacyl tRNA synthetases; Various steps in protein synthesis, proteins involved in initiation, elongation and termination of polypeptides.	6 lectures
	Regulation of transcription in prokaryotes and eukaryotes: Principles of transcriptional regulation; Prokaryotes: Regulation of lacoperon and trp-operon	5 lectures

16 <u>BOTANY CORE</u>

PRACTICALS (20 CLASSES OF 2 HOURS EACH)

1. Preparation of LB medium and raising *E.Coli*. 2. RNA estimation by orcinol method. 3. DNA estimation by diphenylamine reagent/UV Spectrophotometry. 5. Study of DNA replication mechanisms through photographs (Rolling circle, Theta replication and semi-discontinuous replication). 6. Study of structures of prokaryotic RNA polymerase and eukaryotic RNA polymerase II through photographs. 7. Photographs establishing nucleic acid as genetic material (Messelson and Stahl's, Avery et al, Griffith's, Hershey & Chase's and Fraenkel & Conrat's experiments)

8.Study of the following through photographs: Assembly of Spliceosome machinery; Splicing mechanism in group I & group II introns; Ribozyme and Alternative splicing.

Suggested Readings

- 1. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th

edition.

- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings.U.S.A. 9th edition.
- 4. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 5. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W.H. Freeman and Co., U.S.A. 10th edition

17 <u>SEMESTER-IV</u> <u>BOTANY CORE</u>

Core Course IX: Plant Ecology and Phytogeography - 100 marks (Credits-6: Theory-4, Practical-2) Theory (each class 1 hour) PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction Concept of ecology, Autoecology, Synecology, system	5 lectures
	ecology, Levels of organization. Inter-relationships between the living	
	world and the environment, the components of environmental, concept	
	of hydrosphere and lithosphere and dynamism, homeostasis.	
	Soil: Importance; Composition; Physical; Chemical and Biological	2 lectures
	components; Soil profile;	
	Water: Importance: States of water in the environment; Atmospheric	2 lectures
	moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological	
	Cycle; Water in soil; Water table.	
	Light, temperature, wind and fire: Variations; adaptations of plants	4 lectures
	to their variation.	
Unit-II	Population ecology: Characteristics and Dynamics .Ecological	5 lectures
	Speciation	
	Plant communities: Concept of ecological amplitude; Habitat and	5 lectures
	niche; Characters: analytical and synthetic; Ecotone and edge effect;	
	Dynamics: succession - processes, types; climax concepts.	
Unit-III	Ecosystems: Structure; Processes; Trophic organisation; Food chains	5 lectures
	and Food webs; Ecological pyramids.	
	Functional aspects of ecosystem: Principles and models of energy	5 lectures
	flow; Production and productivity; Ecological efficiencies;	
	Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.	
Unit-IV	Phytogeography: Principles; Continental drift; Theory of tolerance;	7 lectures
	Endemism; Brief description of major terrestrial biomes (one each from	
	tropical, temperate & tundra); Phytogeographical division of India;	
	Local Vegetation.	

PRACTICALS

- 1. Determination of pH of various soil and water samples (pH meter,universal indicator/Lovibond comparator and pH paper)
- 2. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.
- 3. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.
- 4. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.
- 5(a). Study of morphological adaptations of hydrophytes and xerophytes (four each).
- (b). Study of biotic interactions of the following: Stem parasite (*Cuscuta*), Root parasite(*Orobanche*) Epiphytes, Predation (Insectivorous plants).
- 6.Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).
- 7. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer's frequency distribution law.
- 8.Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.
- 9. Field visit to familiarize students with ecology of different sites.

Suggested Readings

- 1. Odum, E.P. (2005). Fundamentals of ecology. Cengage Learning India Pvt. Ltd., New Delhi. 5thedition.
- 2. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya

Publications, New Delhi, India.

- 3. Sharma, P.D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
- 4. Wilkinson, D.M. (2007). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford University Press. U.S.A.
- 5. Kormondy, E.J. (1996). Concepts of ecology. PHI Learning Pvt. Ltd., Delhi, India. 4th edition.

19 <u>SEMESTER-IV</u> <u>BOTANY CORE</u>

Core Course X: Plant Systematics – 100 marks(Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Plant identification, Classification, Nomenclature; Biosystematics	2 lectures
	Identification: Field inventory; Functions of Herbarium; Important herbaria	6 lectures
	and botanical gardens of the world and India; Virtual herbarium; E-flora;	
	Documentation: Flora, Monographs, Journals; Keys: Single access and	
	Multi-access	
Unit-II	Taxonomic hierarchy: Concept of taxa (family, genus, species); Categories	6 lectures
	and taxonomic hierarchy; Species concept (taxonomic, biological,	
	evolutionary).	
	Botanical nomenclature: Principles and rules (ICN); Ranks and names;	6 lectures
	Typification, author citation, valid publication, rejection of names, principle	
	of priority and its limitations; Names of hybrids	
Unit-III	Systematics- an interdisciplinary science: Evidence from palynology,	6 lectures
	cytology, phytochemistry and molecular data.	
	Systems of classification: Major contributions of Theophrastus, Bauhin,	6 lectures
	Tournefort, Linnaeus, Adanson, de Candolle, Bessey, Hutchinson, Takhtajan	
	and Cronquist; Classification systems of Bentham and Hooker (upto series)	
	and Engler and Prantl (upto series); Brief reference of Angiosperm	
Unit-IV	Phylogeny of Angiosperms: Terms and concepts (primitive and advanced,	8 lectures
	homology and analogy, parallelism and convergence, monophyly,	
	Paraphyly, polyphyly and clades).origin& evolution of angiosperms;	
	coevolutionof angiosperms and animals; methods of illustrating evolutionary	
	relationship (phylogenetic tree, cladogram).	

20 <u>BOTANY CORE</u>

Practical (20 classes, each class of 2h)

Practical

1. Study of vegetative and floral characters of the following families (Description, V.S.

flower, section of ovary, floral diagram/s, floral formula/e and systematic position

according to Bentham & Hooker's system of classification):

Ranunculaceae - Ranunculus, Delphinium

Brassicaceae - Brassica, Alyssum / Iberis

Myrtaceae - Eucalyptus, Callistemon

Umbelliferae - Coriandrum / Anethum / Foeniculum

Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax

Solanaceae - Solanum nigrum/Withania

Lamiaceae - Salvia/Ocimum

Euphorbiaceae - Euphorbia hirta/E.milii, Jatropha

Liliaceae - Asphodelus/Lilium/Allium

Poaceae - Triticum/Hordeum/Avena

- 2. Field visit (local) Subject to grant of funds from the university.
- 3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book)

Suggested Readings

- 1. Singh, G. (2012). *Plant Systematics:* Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition.
- 2. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 4. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi.
- 5. Radford, A.E. (1986). Fundamentals of *Plant Systematics*. Harper and Row, New York.

21 SEMESTER-V <u>BOTANY CORE</u>

Core Course XI:Reproductive Biology of Angiosperms-100 marks(Credits-6:Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks(Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction: History (contributions of G.B. Amici, W. Hofmeister,	2 lectures
	E. Strasburger, S.G. Nawaschin, P. Maheshwari, B.M. Johri, W.A.	2 100001 05
	Jensen, J. Heslop-Harrison) and scope.	21.4
	Anther: Anther wall: Structure and functions, microsporogenesis,	2 lectures
	callose deposition and its significance.	
	Pollen biology: Microgametogenesis; Pollen wall structure, MGU	5 lectures
	(male germ unit) structure, NPC system; Palynology and scope (a brief	
	account); Pollen wall proteins; Pollen viability, storage and germination;	
	Abnormal features: Pseudomonads, polyads, massulae, pollinia.	
Unit-II	Ovule: Structure; Types; Special structures endothelium, obturator, aril,	5 lectures
	caruncle and hypostase; Female gametophyte- megasporogenesis	
	(monosporic, bisporic and tetrasporic) and megagametogenesis (details of	
	Polygonum type); Organization and ultrastructure of mature embryo sac.	
	Endosperm: Types, development, structure and functions.	3 lectures
		(la atruma a
	Embryo: Six types of embryogeny; General pattern of development of	
	dicot and monocot embryo; Suspensor: structure and functions;	
	Embryo-endosperm relationship; Nutrition of embryo; Unusual features;	
	Embryo development in <i>Paeonia</i> .	
Unit-III	Pollination and fertilization: Pollination types and significance;	4 lectures
	adaptations; structure of stigma and style; path of pollen tube in pistil;	
	double fertilization.	
	Self incompatibility: Basic concepts (interspecific, intraspecific,	7 lectures
	homomorphic, heteromorphic, GSI and SSI); Methods to overcome self-	
	incompatibility: mixed pollination, bud pollination,	
Unit-IV	Seed: Structure, importance and dispersal mechanisms	3 lectures
	Polyembryony and apomixes: Introduction; Classification; Causes and	4 lectures
	applications.	
	Germline transformation: Pollen grain and ovules through pollen tube	2 lectures
	pathway method.	

Practical (20 classes, each class of 2h)

Practical

- 1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular); MMC, spore tetrads, uninucleate, bicelled and dehisced anther stages through slides/micrographs, male germ unit (MGU) through photographs and schematic representation.
- 2. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs,fresh material), ultrastructure of pollen wall(micrograph); Pollen viability: Calculation of germination in different media using hanging drop method.
- 3. Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous, unitegmic, bitegmic; Tenuinucellate and crassinucellate; Special structures: Endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/photographs).
- 4. Female gametophyte through permanent slides/ photographs: Types, ultrastructure of mature egg apparatus.
- 5. Intra-ovarian pollination; Test tube pollination through photographs.
- 6. Endosperm: Dissections of developing seeds for endosperm with free-nuclear haustoria.
- 7. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.

Suggested Readings:

- 1. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms, Vikas Publishing House. Delhi. 5th edition.
- 2. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 3. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 4. Johri, B.M. 1 (1984). Embryology of Angiosperms, Springer-Verlag, Netherland

Core Course XII: Plant Physiology - 100 marks(Credits-6: Theory-4, Practical-2)
THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours
[75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Plant water relationship: Water Potential and its components, water	6 lectures
	absorption by roots, aquaporins, pathway of water movement, symplast,-	
	and apoplastic pathways, root pressure, guttation. Ascent of sap-	
	cohesion-tension theory. Transpiration and factors affecting	
	transpiration, anti transpirants, mechanism of stomatal movement.	
	Translocation in the phloem: Experimental evidence in support of	5 lectures
	phloem as the site of sugar translocation. Pressure-Flow Model; Phloem	
	loading and unloading; Source-sink relationship.	
Unit-II	Mineral nutrition: Essential and beneficial elements, macro, micro and	5 lectures
	trace nutrients, hydroponics, aeroponics(geoponics), mineral deficiency	
	symptoms, roles of essential elements, chelating agents.	
Unit-III	Nutrient Uptake: Soil as a nutrient reservoir, transport of ions across	5 lectures
	cell membrane, passive absorption, electrochemical gradient, facilitated	
	diffusion, active absorption, role of ATP, carrier systems,proton ATPase	
	pump and ion flux, uniport, co-transport, symport, antiport.	
Unit-IV	Plant growth regulators: Bioassay and physiological roles of Auxin,	10 lectures
	Gibberellins, Cytokinin, Abscisic acid, Ethylene.	
	Physiology of flowering: Photoperiodism, florigen concept,	4 lectures
	vernalization, seed dormancy.	
	Phytochrome: Role of phytochrome in photomorphogenesis,.	5 lectures

Practical (20 classes, each class of 2h)

Practical

- 1. Determination of osmotic potential of plant cell sap by plasmolytic method.
- 2. Determination of water potential of given tissue (potato tuber) by weight method.
- 3. Study of the effect of light on the rate of transpiration in excised twig/leaf.
- 4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.
- 5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
- 6. To study the phenomenon of seed germination (effect of light).
- 7. To study the induction of amylase activity in germinating barley grains.

Demonstration experiments

- 1. To demonstrate suction due to transpiration.
- 2. Fruit ripening/Rooting from cuttings (Demonstration). Bolting experiment/Avena coleptile bioassay (demonstration)

Suggested Readings:

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., Moller, I.M. and Murphy, A (2015). Plant Physiology and Development .Sinauer Associates Inc. USA. 6th edition.
- 3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual Narosa Publishing House, New Delhi.

Core Course XIII: Plant Metabolism - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Concept of metabolism: Introduction, anabolic and catabolic pathways,regulation of metabolism, role of regulatory enzymes (allosteric and Isozymes).	
	Carbohydrate metabolism: Synthesis and catabolism of starch.	6 lectures
	Lipid metabolism: Synthesis and breakdown of triglycerides, β-	
	oxidation, glyoxylate cycle, gluconeogenesis and its role in mobilisation of lipids during seed germination, α - oxidation.	
Unit-II	Carbon assimilation: Historical background, photosynthetic pigments,	10 lectures
	role of photosynthetic pigments (chlorophylls and accessory pigments),	
	antenna molecules and reaction centres, photochemical reactions,	
	photosynthetic electron transport, PSI, PSII, Q cycle, CO ₂ reduction,	
	photorespiration, C4 pathways; Crassulacean acid metabolism; Factors	
	affecting CO ₂ reduction.	
Unit-III	Carbon Oxidation: Glycolysis, fate of pyruvate, regulation of	6 lectures
	glycolysis, oxidative pentose phosphate pathway, oxidative	
	decarboxylation of pyruvate, NADH shuttle; TCA cycle,	
	mitochondrial electron transport, oxidative phosphorylation, factors	
	affecting respiration.	
	ATP-Synthesis: Mechanism of ATP synthesis, substrate level	5 lectures
	phosphorylation, chemiosmotic mechanism (oxidative and	
	photophosphorylation), ATP synthase,	
Unit-IV	Nitrogen metabolism: Nitrate assimilation, biological nitrogen	8 lectures
	fixation (examples of legumes and non-legumes); Physiology and	
	biochemistry of nitrogen fixation; Ammonia assimilation and transamination.	

Practical (20 classes, each class of 2h)

Practical	
	1. Chemical separation of photosynthetic pigments.
	2. Experimental demonstration of Hill's reaction.
	3. To study the effect of light intensity on the rate of photosynthesis.
	4. Effect of carbon dioxide on the rate of photosynthesis.
	5. To compare the rate of respiration in different parts of a plant
	6. To study the activity of lipases in germinating oilseeds and demonstrate
	mobilization of lipids during germination.
	7.Demonstration of fluorescence by isolated chlorophyll pigments.
	8. Demonstration of absorption spectrum of photosynthetic pigments.

Suggested Readings:

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A.4th edition.
- 2. Taiz, L., Zeiger, E., Moller, I.M. and Murphy, A (2015). Plant Physiology and Development. SinauerAssociates Inc. USA. 6th edition.
- 3. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.

27 SEMESTER-VI <u>BOTANY CORE</u>

Core Course XIV: Plant Biotechnology - 100 marks(Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15+ End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Plant Tissue Culture: Historical perspective; Aseptic tissue culture techniques, Composition of media; Nutrient and hormone requirements (role of vitamins and hormones).	3 lectures
	Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation).	7 lectures
Unit-II	Recombinant DNA technology-I: Restriction Endonucleases (History, Types I-IV, biological role and application); Restriction Mapping (Linear and Circular); Cloning Vectors: Prokaryotic (pUC 18 and pUC19, pBR322, Ti plasmid, BAC); Lambda phage, M13 phagemid, Cosmid, Shuttle vector; Eukaryotic Vectors (YAC) Gene Cloning (Recombinant DNA, Bacterial Transformation and selection of recombinant clones, PCR-mediated gene cloning).	10 lectures
Unit-III	Recombinant DNA technology-II: Gene Construct; construction of genomic and cDNA libraries, screening DNA libraries to obtain geneof interest by genetic selection; complementation, colony hybridization; Probes-oligonucleotide, heterologous, PCR; Methods of gene transfer-Agrobacterium-mediated, Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment; Selection of transgenics-selectable marker and reporter genes (Luciferase, GUS, GFP).	10 lectures
Unit-IV	Applications of Biotechnology: Pest resistant (Bt-cotton); herbicide resistant plants (Round Up Ready soybean); Transgenic crops with improved quality traits (Flavr Savr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug); edible vaccines; Industrial enzymes (Aspergillase, Protease, Lipase); Gentically Engineered Products-Human Growth Hormone; Humulin; Biosafety concerns.	10 lectures

PRACTICALS (20 CLASSES OF 2 HOURS EACH)

PRACTICALS

- 1. (a) Preparation of MS medium.
 - (b) Demonstration of *in vitro* sterilization and inoculation methods using leaf and nodal explants of tobacco, *Datura, Brassica* etc.
- 2.Study of anther, embryo and endosperm culture, micro propagation, somatic Embryogenesis & artificial seeds through photographs.
- 3. Construction of restriction map of circular and linear DNA from the data provided.
- 4. Study of methods of gene transfer through photographs: *Agrobacterium*-mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment.
- 5. Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savrtomato through photographs.
- 6.Restriction digestion and gel electrophoresis of plasmid DNA.(Demonstration)

SUGGESTED READINGS

- 1. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 3. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications Of recombinant DNA. ASM Press, Washington.
- 4. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms.

Vikas Publication HousePvt. Ltd., New Delhi. 5th edition.

- 5. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics.
- John Wiley and Sons, U.K. 5thedition.
- 6. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 7. Chawla, H.S. (2010). Introduction to Plant Biotechnology.

Oxford & IBH Publishing Co.Pvt Ltd., New Delhi.

7. Singh, B. D. (2010) Biotechnology: Expanding Horizon. Kalyani Publishers. New Delhi

Discipline Specific Elective Courses (DSE)

Semester-V

Discipline Specific Elective (DSE-1): Analytical Techniques in Plant Sciences – 100 marks (Credits-6:)THEORY (Each class 1 hour): [100 marks (Mid Sem 20+ End Sem 80)]Lectures: 40 Theory

Unit –I	Imaging and related techniques: Principles of microscopy; Light	8 lectures
	microscopy; Fluorescence microscopy; Confocal microscopy;	
	Use of fluorochromes: (a) Flow cytometry (FACS); (b) Applications of	
	fluorescence microscopy: Chromosome banding, FISH, chromosome	
	painting; Transmission and Scanning electron microscopy - sample	
	preparation for electron microscopy, cryofixation, negative staining, shadow	
	casting, freeze fracture, freeze etching	
Unit –II	Cell fractionation: Centrifugation: Differential and density gradient	6 lectures
	centrifugation, sucrose density gradient, CsCl2gradient, analytical	
	centrifugation, ultracentrifugation, marker enzymes.	
	Radioisotopes: Use in biological research, auto-radiography, pulse chase	4 lectures
	experiment.	
Unit-III	Spectrophotometry: Principle and its application in biological research.	4 lectures
	Characterization of proteins and nucleic acids: Mass spectrometry; X-ray	6 lectures
	diffraction; X-ray crystallography; Characterization of proteins and nucleic	
	acids; Electrophoresis: AGE, PAGE, SDS-PAGE	
Unit-IV	Biostatistics: Statistics, data, population, samples, parameters;	12 lectures
	Representation of Data: Tabular, Graphical; Measures of central tendency:	
	Arithmetic mean, mode, median; Measures of dispersion: Range, mean	
	deviation, variation, standard deviation; Chi-square test for goodness of fit	

Suggested Readings

1. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co.

Ltd. New Delhi. 3rd edition.

- 2. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.
- 3. Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995).

Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.

4. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication. U.S.A. 4th edition.

SEMESTER-V

Discipline Specific Elective (DSE-2): Biostatstics – 100 marks(Credits-6) THEORY (Each class 1 hour): [100 marks (Mid Sem 20 + End Sem 80)]Lectures: 40 Theory

Unit –I	Biostatistics - definition - statistical methods - basic	8 lectures
	principles. Variables -measurements, functions, limitations	
	and uses of statistics.	
Unit –II	Collection of data primary and secondary - types and methods	8 lectures
	of data collection procedures - merits and demerits.	
	Classification - tabulation and presentation of data – sampling	
	methods.	
Unit –III	Measures of central tendency - mean, median, mode,	10 lectures
	geometric mean -merits & demerits. Measures of dispersion -	
	range, standard deviation, mean deviation, quartile deviation -	
	merits and demerits; Co- efficient of variations.	
Unit –IV	Correlation - types and methods of correlation, regression,	8 lectures
	simple regression equation, fitting prediction, similarities and	
	dissimilarities of correlation and regression	
	Statistical inference - hypothesis - simple hypothesis -	6 lectures
	student 't' test – chi square test.	

SEMESTER-VI

Discipline Specific Elective (DSE - 3):Stress Biology – 100 marks(Credits-6THEORY (Each class 1 hour):[100 marks (Mid Sem 20 + End Sem 80)]Lectures: 40 Theory

Unit –I	Environmental factors: Water stress; Salinity stress, High	12 lectures
	light stress;	
	Temperature stress; Hypersensitive reaction; Pathogenesis—	
	related (PR)proteins; Systemic acquired resistance;	
	Mediation of insect and disease resistance by jasmonates.	
Unit –II	Stress sensing mechanisms in plants: Role of nitric	12 lectures
	oxide. Calcium modulation, Phospholipid signaling	
Unit –III	Developmental and physiological mechanisms that	10 lectures
	protect plants	
	against environmental stress: Adaptation in plants;	
	Changes in root: shoot ratio; Aerenchyna development;	
	Osmotic adjustment; Compatible solute production.	
Unit –IV	Reactive oxygen species - Production and scavenging	6 lectures
	mechanisms. Acclimation and adaptation of plants.	

FIRST SEMESTER: MINOR-1 GE-I (Botany)

F.M 75+25=100(04 +02 credits)

Duration of Exam: 3

hours

Minor –I Generic Elective-1 (Bio-molecules and Biodiversity in life)

Unit –I	Cell ,Molecular Biology and Genetics	
	Ultra-structure of a typical plant cell and its organelles. cell	Periods ·10
	division, types and significance Structure and types of DNA, DNA	1 011003 .10
	Replication in Prokaryotes ,Principles of inheritance, Mendel's laws	
	of inheritance, Cytoplasmic inheritance in <i>Mirabillis</i> and Snail.	
	Mutation ,Ploidy (Aneuploidy and euploidy)	
Unit –II	Microbiology, Phycology Mycology & Pathology	
	Viruses: Structure of TMV and bacteriophage, replication of	Dominds 110
	bacteriophages (Lytic and Lysogenic cycle)	rerious :10
	, , , , , , , , , , , , , , , , , , , ,	
	economic importance,	
	Phycology: Thallus organisation reproduction and economic	
	importance of algae, and life cycle of the following genera:	
	Chlamydomonas, Oedogonium, Chara, Vaucheria, Polysiphnia,	
	Mycology: General characteristics of fungi: life cycle of the	
	following genera: Rhizopus, Penicillium, Puccinia,	
	Pathology : Symptoms, causative organism, and control measures	
	of the following diseases- Damping off of seedlings, Mildew of Pea,	
	Rust of Wheat.(No developmental stages necessary for life cycle)	
Unit –III	Diversities in Land Plants	
	Bryophytes : General features of Bryophytes, morphology, anatomy	Periods :10
	, reproduction and life cycle of <i>Marchantia, Anthoceros</i> ,	
	Sphagnum.	
	Pteridophytes: General features of Pteridophytes, morphology,	
	anatomy, reproduction and life cycle of Selaginella, Equisetum,	
	Marsilea.	
	Gymnosperm : General features of Gymnosperm, morphology,	
	anatomy, reproduction and life cycle of Cycas, Pinus and Gnetum.	
	.(No developmental stages necessary for life cycle)	
Unit –IV	Anatomy and Embryology	
	Tissues: Meristematic and Permanent tissues, Shoot apex	Periods:10
	organization and the theories related to it, Normal and anomalous	
	secondary growth, Microsporogenesis, megasporogenesis,	
	development of male and female gametophyte, Pollination and	
	fertilization, Types of endosperms, development of typical dicot	
	and monocot embryo.	

BOTANY

General elective - I

PRACTICAL (20 CLASSES 2 HOURS EACH)

Microbiology,	1. Electron micrographs/Models of viruses - T-Phage and TMV, Line
Phycology	drawings/Photographs of Lytic and Lysogenic Cycle.
,Mycology&	2. Gram staining.
Pathology	3. Study of vegetative and reproductive structures of <i>Chlamydomonas</i>
	,Oedogonium, Chara, Vaucheria, and Polysiphonia, temporary slide
	preparations.
Cytology	Microgrphic stydy of :- Prokaryotic DNA replication, 3D structure of different types iof
	DNA
Diversities in Land	Permanent slides of Bryophytes,Pteridophytes & Gymnosperms.
Plants, Anatomy	Stem of dicotyledonos plant with abnormal secondary growth fetures.
and Embryology.	Embryological permanent slides

Suggested Readings

- 5. Lee, R.E. (2008). Phycology, Cambridge University Press, Cambridge. 4th edition.
- 6. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition.
- 7. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West Press, Delhi.
- 8. Sahoo, D. (2000). Farming the ocean: seaweeds cultivation and utilization. Aravali International, NewDelhi.
- 9. The embryology of angiosperms.
- 10.B.P.Pandey (2010) Anatomy of plants

THIRD SEMESTER: MINOR-1 GE-II (Botany)

F.M 75+25=100(04 +02 credits)

Duration of Exam: 3

hours

Minor –I Generic Elective-II (Plant and Human Welfare, Plant physiology and Biostatistics)

Unit –I	Systematics and Economic Botany:	Periods :6
	Artificial, natural and phylogenetic system of classification,	
	Economic uses of the following plants in relation to human welfare	
	(in form of short notes) with reference to rice, black gram, mustard,	
	cotton, coffee, Cinchona, Ocimum.	
Unit -II	Plant Physiology	Periods :14
	Photosynthesis: Light & Dark reaction, Mechanism of	
	photophosphorylation; Path of carbon, C ₃ , C ₄ and CAM cycle,	
	Respiration; glycolysis, TCA cycle ,electron transport system,	
	Mechanism of oxidative phosphorylation ,hexose monophosphate	
	shunt, Nitrogen fixation: symbiotic and non-symbiotic mechanism,	
	, phases of growth, Phytohormones : discovery, physiological role	
	of Auxins, Gibberellins, cytokinins and ABA. Flowering:	
	Photoperiodism and vernalization.	
Unit –III	Environmental Biology	Periods:10
	Environment and its components. Communities and their	
	characteristics. Ecosystems: Concepts, structure and function of	
	ecosystem; energy flow, bio-geo chemical cycles. Renewable and	
	non-renewable energy resources and their management. Pollution of	
	air, water, soil, noise, and their control and prevention. Global	
	warming, Acid rain and Ozone depletion.	
Unit-IV	Biostatistics	Periods:10
	Need of statistics in biology, collection of biological data, central	
	tendency- mean, median, mode and their biological significance,	
	dispersion, mean deviation, variance, standard deviation and their	
	biological imporantance, Estimation and hypothesis testing,	
	student's t-test and Chi-square test and their application	

Internal Assessment: Home Assignment submission

BOTANY

General elective - II

PRACTICAL (20 CLASSES 2 HOURS EACH)

Systematics and	Taxonomy of plants belonging to :- Rubiaceae, Apocynaceae,			
Economic Botany:	Asclepiadaceae, Asteraceae solanaceae, Lamiaceae, Brassicaceae And			
	Liliaceae			
	Economic importance of :- Rice, Black gram, Mustard, Cotton, Coffee,			
	Cinchona & Ocimum.			
Plant Physiology	Determination of osmotic pressure of vacular cells of epidermid of Rhoeo discolor leaf			
	by plasmolytic method, Determination of OP of Root / Stem tuber.			
Environmental	Central tendency, Standard Deviation & chi square test			
Biology &				
Biostatistics				

Suggested Readings

- 1. Systematic botany and Economic Botany by Sing ,Pandey Jain
- 2. Plant physiology by Arun Chandra Sahu
- 3. Perspectives in Ecology & Biostatistics by Mandeep Raj & Rajan Sharma

FOURTH SEMESTER: SEC-II F.M 80+20=100(04 credits)

Subject Specific Skill (SEC-II) : Applied Biotechnology (40 periods)

Unit –I	Genetic Engineering	10 lectures
	Structure and Biological importance of DNA and RNA, DNA	
	replication in prokaryotes, Mechanism of Transcription and	
	process of translation.	
	Restriction endonucleases, ligases, linker, prokaryotic and	
	eukaryotic cloning vectors, Introduction of DNA fragments in to	
	vectors , r-DNA technology , Gel Electrophoresis, Blotting	
	techniques and their applications, Bacterial recombination.	
Unit –II	Plant Biotechnology	10 lectures
	Tissue culture laboratory requirements, techniques, Tissue culture	
	methods, Protoplast fusion, germ plasm conservation, transgenic	
	organisms., Brief idea about application of plant biotechnology	
Unit –III	Environmental Biotechnology	10lectures
	Basic concept and issue of environment, A brief idea of air, water	
	pollution and it's control through biotechnology, Green house	
	effect, Acid rain, Ozone depletion and their impact on the	
	environment.	
Unit-IV	Ethics in Biotechnology	10 lectures
	Ethical problems involved in medical and agricultural bio-	
	technology, IPP, IPR, Patenting rules with examples	

Internal Assessment: Home Assignment submission

SECOND SEMESTER

ABILITY ENHANCEMENT COMPULSORY COURSE (AECC -I)

F. M. 100 (80+20) (04 credits)

ENVIRONMENTAL STUDIES

Unit –I	Basic concepts of Environmental studies: The Environment -	10 lectures
	Air, Water and Land, Environmental factors (Abiotic factors:	
	Light, Temp, Soil, Water, Air and Biotic factors), Ecological	
	adaptations .Ecological succession (hydrosere and xerosere)	
Unit –II	Ecosystem: Structure and Function, Energy flow, Food chain,	10 lectures
	Food web, Ecological Pyramids, Bio-geo -chemical cycles:	
	Hydrological cycle (water) ,Gaseous cycles (Oxygen and	
	Carbon dioxide) Sedimentary cycle (Nitrogen and Sulphur)	
	Population studies: population density,natality,mortality,carrying	
	capacity and growth curves.	
Unit –III	Environmental pollution : Air pollution, Water pollution ,Soil	10 lectures
	pollution ,Noise pollution, radiation pollution . Depletion of	
	Ozone layer, Green house effects ,Pollution indicators(lichen	
	and algal species)	
Unit-IV	Renewable and Non-renewable energy resources. Conservation	10 lectures
	of natural recourses .Forest Conservation and afforestation,	
	Social Forestry, Biodiversity conservation, (in situ and ex situ).	
	Pollution control Board and its functions, Environmental	
	awareness.	

Internal Assessment: written Examination

FIRST SEMESTER: MINOR-1 GE-I (Botany)

F.M 80+20=100(04 credits)

Duration of Exams: 3 hours

Minor –I Generic Elective-1 (Bio-molecules and Biodiversity in life)

Unit-1: Cell and Molecular Biology

Structure of a typical plant cell, Structure and function of cell wall, cell membrane, mitochondria, chloroplast, endoplasmic reticulum, golgibodies, lysosomes, peroxisomes, glyoxysomes, ribosomes, cytoskeletons, nucleus, chromosomes, Process of cell division, Structure and function of nucleic acid., DNA Replication, Concept of Gene, Lac Operon

Unit-II: Microbiology& Genetics

Viruses, Historical account, occurrence, morphology and structure of TMV and bacterial (T4) viruses, replication of bacteriophages, viroids, prions. Eubacteria: Structure, endospore formation, nutrition, recombination, economic importance, Cyanobacteria, Archebacteria, Economic importance of microbes, Principles of inheritance- Mendel's experiment, gene interactions, Cytoplasmic inheritance, gene mutation: spontaneous and induced mutation. Chromosomal aberrations, Polyploidy, Plant breeding- general account

Unit-III: Algae, Fungi and Pathology

Thallus organization, reproduction and economic importance of algae. Characteristics and life cycle of the following genera: *Chlamydomonas*, *Oedogonium*, *Zygnema*, *Chara*, *Vaucheria*, *Fucus*, *Batrachospermum*, *Polysiphonia*.

General characteristics of fungi: Characteristics and life cycle of the following genera: *Phytopthora, Rhizopus, Saccharomyces, Penicillium, Erysiphe, Puccinia, Agaricus.* Symptoms, causative organism, transmission and control measures of the following diseases- Tobacco mosaic diseases, Wilt of potato, Damping off, late blight, white rust, Powdery mildew, rust.

Unit-IV: Diversities in Land Plants

General features of Bryophytes, structure, reproduction and life cycle of *Riccia, Marchantia, Anthoceros, Sphagnum.* General features of Pteridophytes, morphology, anatomy, reproduction and life cycle of *Psilotum, Lycopodium, Selaginella, Equisetum, Marsilea.* General features of Gymnosperm, morphology, anatomy, reproduction and life cycle of *Cycas, Pinus* and *Gnetum.*

Unit-V: Angiosperm Anatomy and Embryology

Tissues: Meristematic tissues, its organization in the shoot and root apices, mechanical tissue types, principles involved in their distribution, anomalous secondary growth, root stem transition. Microsporogenesis, megasporogenesis, development of male and female gametophyte, double fertilization, structure and development of endosperms, development of dicot and monocot embryo.

THIRD SEMESTER: MINOR-1 GE-III F.M 80+20=100 (04 credits)

Minor –1 Generic Elective-III (Plant and Human Welfare, Plant physiology & Biostatistics)

Unit-I: Angiosperm Systematics and Economic Botany:

Taxonomic hierarchy: Taxonomic category, taxonomic groups, Principles and rules; type method; principle of priority; Artificial, natural and phylogenetic system of classification, modern taxonomy in relation to anatomy, embryology, palynology, cytology ,Economic uses of the following plants in relation to human welfare (in form of short notes) with reference to rice, wheat, maize, Bengal gram, green gram, black gram, mustard, groundnut, sunflower, cotton, jute, coir, coffee, tea, Rauwolfia, Cinchona, Ocimum, Mentha, Aegle.

Unit – II : Plant Physiology

Water potential, Diffusion, Osmosis, Absorption of water Ascent of sap, Transpiration, Absorption of minerals, Translocation of organic solutes Photosynthesis: Light & Dark reaction, Mechanism of photophosphorylation; Path of carbon, C 3, C 4 and CAM cycle, Respiration; glycolysis, anaerobic path way TCA cycle, electron transport system, Mechanism of oxidative phosphorylation, hexose monophosphate shunt, Nitrogen fixation: symbiotic and non-symbiotic mechanism, , phases of growth, Phytohormones: discovery, physiological role and mechanism of action of Auxins, Gibberellins and cytokinins. Flowering: Photoperiodism and vernalization.

Unit:III Molecular Biology: DNA as a genetic material, DNA replication, central dogma, transcription and translation, Gene concept,r-DNA technology.

Unit-IV: Environmental Biology

Environment- soil, water, air, biotic components- general account Communities and their characteristics. Ecosystems: Concepts, structure and function of ecosystem, energy flow, bio-geo chemical cycle. Renewable and non-renewable energy and its management. Conservation of Bio-diversity, pollution of air, water, soil, noise, thermal and radioactive and it's control and prevention. Global warming, Acid rain and Ozone depletion

Unit-V: Biostatistics

Need of statistics in biology, collection of biological data, frequency distribution, frequency, relative frequency and cumulative frequency, central tendency- mean, median, mode and their biological significance, dispersion, range, Quartile deviation, mean deviation, varience, standard deviation and their biological importance, Estimation and hypothesis testing, student's t –test and Chi-square test . their application

FOURTH SEMESTER: SEC-II F.M 80+20=100(04 credits)

Subject Specific Skill (SEC-II) : Applied Biotechnology

Unit-I: Genetic Engineering

Structure and Biological importance of DNA and RNA, DNA replication in prokaryotes,

Mechanism of Transcription and process of translation.

Restriction endonucleases, ligases, linker, prokaryotic and eukaryotic cloning vectors, Introduction of DNA fragments in to vectors, r-DNA technology, Gel Electrophoresis, Blotting

techniques and their applications, Bacterial recombination.

Unit-II: Plant Biotechnology

Tissue culture laboratory requirements, techniques, Tissue culture methods, Protoplast fusion, germ plasm conservation, transgenic organisms., Brief idea about application of plant

biotechnology

Unit –III: Animal Biotechnology

Primary and established cell culture, culture media, basic techniques of mammalians cell culture,

Application of animal cell culture, Individual concept of immune system, Brief idea about

Antigen-Antibody interaction

Unit –IV: Environmental Biotechnology

Basic concept and issue of environment, A brief idea of air, water pollution and it's control through biotechnology, Green house effect, Acid rain, Ozone depletion and their impact on the

environment.

Unit –V: Ethics in Biotechnology

Ethical problems involved in medical and agricultural bio-technology, IPP, IPR, Patenting rules

with examples

Internal Assessment: Home Assignment submission

SECOND SEMESTER

ABILITY ENHANCEMENT COMPULSORY COURSE (AECC -1)

F. M. 50 (40+10) (02 credits)

ENVIRONMENTAL STUDIES

UNIT -I

Basic concepts Environmental studies: Definitions: The Environment - Air, Water and Land. Ecology ,Ecosystem , Environmental factors (Abiotic factors : Light , Temp ,Soil ,Water, Air and Biotic factors) ,Ecological adaptations .

UNIT -II

Ecosystem: Structure and Function, Energy flow, Food chain, Food web, Ecological Pyramids, Bio-geo—chemical cycles: Hydrological cycle (water), Gaseous cycles (Oxygen and Carbon dioxide) Sedimentary cycle (Nitrogen and Sulphur)

UNIT-III

Population Studies: Population density, Natality, mortality, carrying capacity, age, Population growth curves, community structure, Ecological Succession (Hydrosere and Xerosere)

UNIT-IV

Environmental pollution : Air pollution, Water pollution ,Terrestrial pollution ,Noise pollution, radiation pollution .Types of pollutants , Depletion of Ozone layer , Green house effects ,Smog ,Acid rain

Unit-V

Renewable and Non-renewable resources and their Conservation, Conservation of natural recourses , Soil erosion and conservation. Forest Conservation. Afforestation, Social Forestry, Biodiversity conservation, Pollution control Board and functions, Environmental awareness and mass education

Internal Assessment: written Examination

Discipline Specific Elective Courses (DSE)

Semester-V
Discipline Specific Elective (DSE -1): Analytical Techniques in Plant Sciences - 100 marks (Credits-6: Theory-4, Practical-2)THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit –I	Imaging and related techniques: Principles of microscopy; Light microscopy; Fluorescence microscopy; Confocal microscopy; Use of fluorochromes: (a) Flow cytometry (FACS); (b) Applications of fluorescence microscopy: Chromosome banding, FISH, chromosome painting; Transmission and Scanning electron microscopy — sample preparation for electron microscopy, cryofixation, negative staining, shadow casting, freeze fracture, freeze etching	10 lectures
Unit-II	Cell fractionation: Centrifugation: Differential and density gradient centrifugation, sucrose density gradient, CsCl2gradient, analytical centrifugation, ultracentrifugation, marker enzymes.	5 lectures
Unit-III	Radioisotopes: Use in biological research, auto-radiography, pulse chase experiment. Spectrophotometry: Principle and its application in biological	3 lectures
	research.	
	Chromatography: Principle; Paper chromatography; Column chromatography, TLC, GLC, HPLC, Ion-exchange chromatography; Molecular sieve chromatography; Affinity chromatography.	6 lectures
Unit-IV	Characterization of proteins and nucleic acids: Mass spectrometry; X-ray diffraction; X-ray crystallography; Characterization of proteins and nucleic acids; Electrophoresis: AGE, PAGE, SDS-PAGE	5 lectures
Unit-V	Biostatistics: Statistics, data, population, samples, parameters; Representation of Data: Tabular, Graphical; Measures of central tendency: Arithmetic mean, mode, median; Measures of dispersion: Range, mean deviation, variation, standard deviation; Chi-square test for goodness of fit	5 lectures

Practical (20 classes, each class of 2h)

Study of Blotting techniques: Southern, Northern and Western, DNA fingerprinting, DNA sequencing, PCR through photographs.

- 2. Demonstration of ELISA.
- 3. To separate nitrogenous bases by paper chromatography.
- 4. To separate sugars by thin layer chromatography.
- 5. Isolation of chloroplasts by differential centrifugation.
- 6. To separate chloroplast pigments by column chromatography.
- 7. To estimate protein concentration through Lowry's methods.
- 8. To separate proteins using PAGE.
- 9. To separation DNA (marker) using AGE.
- 10. Study of different microscopic techniques using photographs/micrographs (freeze fracture, freeze etching, negative staining, positive staining, fluorescence and FISH).
- 11. Preparation of permanent slides (double staining).
- 12. Estimation of plant pigments.

Suggested Readings

1. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co.

Ltd. New Delhi. 3rd edition.

- 2. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.
- 3. Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995).

Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.

4. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication. U.S.A. 4th edition.

Semester-V

Discipline Specific Elective (DSE –2):Natural Resource Management – 100 marks (Credits-6: Theory-4, Practical-2)THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit –I	Natural resources: Definition and types. Sustainable utilization: Concept, approaches (economic, ecological and socio-cultural).	5 lectures
Unit –II	Land: Utilization (agricultural, pastoral, horticultural, silvicultural); Soil degradation and management.	5 lectures
	Water: Fresh water (rivers, lakes, groundwater, aquifers, watershed); Marine; Estuarine; Wetlands; Threats and management strategies	4 lectures
Unit –III	Biological Resources: Biodiversity-definition and types; Significance; Threats; Management strategies; Bioprospecting; IPR; CBD; National Biodiversity Action Plan).	8 lectures
	Forests: Definition, Cover and its significance (with special reference toIndia); Major and minor forest products; Depletion; Management.	4 lectures
Unit –IV	Energy: Renewable and non-renewable sources of energy Contemporary practices in resource management: EIA, GIS,Participatory Resource Appraisal, Ecological Footprint with emphasis oncarbon footprint.	6 lectures
Unit –V	Resource Accounting; Waste management. National and international efforts in resource management and conservation	4 lectures

Practical (20 classes, each class of 2h)

Practical

- 1. Estimation of solid waste generated by a domestic system (biodegradable andNon biodegradable) and its impact on land degradation.
- 2. Collection of data on forest cover of specific area.
- 3. Measurement of dominance of woody species by DBH (diameter at breast height) method.
- 4. Calculation and analysis of ecological footprint.
- 5. Ecological modeling.

Suggested Readings

- 1. Vasudevan, N. (2006). Essentials of Environmental Science. Narosa Publishing House, New Delhi.
- 2. Singh, J. S., Singh, S.P. and Gupta, S. (2006). Ecology, Environment and Resource Conservation.

Anamaya Publications, New Delhi.

3. Rogers, P.P., Jalal, K.F. and Boyd, J.A. (2008). An Introduction to Sustainable Development. Prentice

Hall of India Private Limited, New Delhi.

SEMESTER-VI

Discipline Specific Elective (DSE -3): Biostatstics -100 marks(Credits-6: Theory-4, Practical-2)

THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)[75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit –I	Biostatistics - definition - statistical methods - basic	8 lectures
	principles. Variables -measurements, functions, limitations	
	and uses of statistics.	
Unit –II	Collection of data primary and secondary - types and methods	8 lectures
	of data collection procedures - merits and demerits.	
	Classification - tabulation and presentation of data – sampling	
	methods.	
Unit –III	Measures of central tendency - mean, median, mode,	10 lectures
	geometric mean -merits & demerits. Measures of dispersion -	
	range, standard deviation, mean deviation, quartile deviation -	
	merits and demerits; Co- efficient of variations.	
Unit –IV	Correlation - types and methods of correlation, regression,	8 lectures
	simple regression equation, fitting prediction, similarities and	
	dissimilarities of correlation and regression	
Unit -V	Statistical inference - hypothesis - simple hypothesis -	6 lectures
	student 't' test - chisquare test.	

Practical (20 classes, each class of 2h)

Practical

- 1) Calculation of mean, standard deviation and standard error
- 2) Calculation of correlation coefficient values and finding out the probability
- 3) Calculation of 'F' value and finding out the probability value for the F value.

Suggested Readings

- 1. Biostatistic, Danniel, W.W., 1987. New York, John Wiley Sons.
- 2. An introduction to Biostatistics, 3rd edition, Sundarrao, P.S.S and Richards, J. Christian Medical

College, Vellore

- 3. Statistical Analysis of epidemiological data, Selvin, S., 1991. New York University Press.
- 4. Statistics

for Biology, Boston, Bishop, O.N. Houghton, Mifflin.

- 5. The Principles of scientific research, Freedman, P. New York, Pergamon Press.
- 6. Statistics for Biologists, Campbell, R.C., 1998. Cambridge University Press, UK

SEMESTER-VI

Discipline Specific Elective (DSE -4):Stress Biology - 100 marks(Credits-6: Theory-4, Practical-2)THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)[75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit –I	Defining plant stress: Acclimation and adaptation.	2 lectures
Unit –II	Environmental factors: Water stress; Salinity stress, High	12 lectures
	light stress;	
	Temperature stress; Hypersensitive reaction; Pathogenesis—	
	related (PR)proteins; Systemic acquired resistance;	
	Mediation of insect and disease resistance by jasmonates.	
Unit –III	Stress sensing mechanisms in plants: Role of nitric	12 lectures
	oxide. Calcium modulation, Phospholipid signaling	
Unit –IV	Developmental and physiological mechanisms that	10 lectures
	protect plants	
	against environmental stress: Adaptation in plants;	
	Changes in root: shoot ratio; Aerenchyna development;	
	Osmotic adjustment; Compatible solute production.	
Unit -V	Reactive oxygen species-Production and scavenging	4 lectures
	mechanisms.	

Practical (20 classes, each class of 2h)

Practical

- 1. Quantitative estimation of peroxidase activity in the seedlings in the absence and presence of salt stress.
- 2. Superoxide activity in seedlings in the absence and presence of salt stress.
- 3. Assay of Ascorbate
- 4. Assay of peroxidase.
- 5. Assay of superoxide dismutase activity.
- 6. Quantitative estimation and analysis of catalase.

Suggested Readings

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A.4th edition.
- **2.** Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. SinauerAssociates Inc. USA. 6th edition.

SEMESTER-I

BOTANY CORE

Core Course I: Microbiology and Phycology 100 marks (Credits-6: Theory-4, Practical-2)

THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

UNIT –I	Introduction to microbial world, microbial nutrition, growth and metabolism	2 lectures
	Viruses :-Discovery, physiochemical and biological characteristics; classification (Baltimore), general structure with special reference to viroids and prions; replication (general account), DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV). Economic importance of viruses	5 lectures
UNIT - II	Bacteria: - Discovery, general characteristics, types-archaebacteria, eubacteria, wall-less forms (mycoplasma and spheroplasts), cell structure, nutritional types, reproduction-vegetative, asexual and recombination (conjugation, transformation and transduction). Economic importance of bacteria with reference to their role in agriculture and industry (fermentation and medicine).	5 lectures
UNIT-III	Algae:- General characteristics; Ecology and distribution; range of thallus organization; Cell structure and components; cell wall, pigment system, reserve food (of only groups represented in the syllabus), flagella; and methods of reproduction, classification; criteria, system of Fritsch, and evolutionary classification of Lee (only upto groups); significant contributions of important phycologists (F.E. Fritsch, G.M. Smith, R.N. Singh, T.V. Desikachary, H.D. Kumar, M.O.P. Iyengar). Role of algae in the environment, agriculture, biotechnology and industry. Economic importance of algae.	6 lectures
UNIT- IV	Cyanophyta:- Ecology and occurrence, range of thallus organization, cell structure, heterocyst, reproduction. economic importance; role in biotechnology. Morphology and life-cycle of <i>Nostoc</i>	5 lectures
	Chlorophyta:- General characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycles of <i>Chlamydomonas</i> , <i>Volvox</i> , <i>Oedogonium</i> , <i>Coleochaete</i> .	5 lectures
UNIT - V	Charophyta:- General characteristics; occurrence, morphology, cell structure and life-cycle of <i>Chara</i> ; evolutionary significance. Xanthophyta:- General characteristics; range of thallus organization; Occurrence, morphology and life-cycle of <i>Vaucheria</i>	2 lectures 3 lectures
	Phaeophyta:- Characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycles	3 lectures
	Rhodophyta:- General characteristics, occurrence, range of thallus	4 lectures

organization, cell structure and reproduction. Morphology and life-cycle of *Polysiphonia*.

BOTANY CORE

PRACTICAL (20 CLASSES 2 HOURS EACH)

MICROBIOLOGY	1. Electron micrographs/Models of viruses - T-Phage and TMV, Line	
	drawings/Photographs of Lytic and Lysogenic Cycle.	
	2. Types of Bacteria to be observed from temporary/permanent	
	slides/photographs.	
	Electron micrographs of bacteria, binary fission, endospore, conjugation,	
	root Nodule.	
	3. Gram staining.	
	4.Endospore staining (endospores takenfrom soil bacteria)	
PHYCOLOGY	Study of vegetative and reproductive structures of Nostoc,	
	Chlamydomonas ,Volvox, Oedogonium,Coleochaete, Chara, Vaucheria,	
	Ectocarpus, Fucus and Polysiphonia, temporary preparations and	
	permanent slides.	

Suggested Readings

- 1. Lee, R.E. (2008). Phycology, Cambridge University Press, Cambridge. 4th edition.
- 2. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition.
- 3. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West Press, Delhi.
- 4. Sahoo, D. (2000). Farming the ocean: seaweeds cultivation and utilization. Aravali International, New

Delhi.

- 5. Campbell, N.A., Reece J.B., Urry L.A., Cain M.L., Wasserman S.A. Minorsky P.V., Jackson R.B.(2008). Biology, Pearson Benjamin Cummings, USA. 8th edition.
- 6. Pelczar, M.J. (2001) Microbiology, 5th edition, Tata McGraw-Hill Co, New Delhi

SEMESTER-I

BOTANY CORE

<u>Core Course II:</u> Biomolecules and Cell Biology-100 marks(Credits-6:Theory-4,Practical-2)

THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes

UNIT -I	Biomolecules:- Types and significance of chemical bonds; Structure and properties of water; pH and buffers.	2 lectures
	Carbohydrates: Nomenclature and classification; Role of monosaccharides (glucose, fructose, sugar alcohols - mannitol and sorbitol); Disaccharides (sucrose, maltose, lactose), Oligosaccharides and polysaccharides (structural-cellulose, hemicelluloses, pectin, chitin, mucilage; storage -starch, insulin)	3 lectures
	Lipids: Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and functions. Essential fatty acids. Triacylglycerols structure, functions and properties	2 lectures
	Proteins: Structure of amino acids; Peptide bonds; Levels of protein structure-primary, secondary, tertiary and quarternary; Isoelectric point; Protein denaturation and biological roles of proteins	2 lectures
	Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotides; Types of nucleic acids; Structure of A, B, Z types of DNA; Types of RNA; Structure of tRNA	
UNIT-II	Bioenergenetics: Laws of thermodynamics, concept of free energy, endergonic and exergonic reactions, coupled reactions, redox reactions.ATP: structure, its role as a energy currency molecule.	3 lectures
	Enzymes: Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; Classification of enzymes; Features of active site, substrate specificity, mechanism of action (activation energy, lock and key hypothesis, induced - fit theroy), Michaelis - Menten equation, enzyme inhibition and factors affecting enzyme activity.	4 lectures
UNIT-III	The cell: Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic theory).	2 lectures
	Cell wall and plasma membrane: Chemistry, structure and function of Plant Cell Wall. Overview of membrane function; fluid mosaic model; Chemical composition of membranes; Membrane transport - Passive, active and facilitated transport, endo cytosis and exocyosis.	3lectures
UNIT-IV	Cell organelles: Nucleus; Structure-nuclear envelope, nuclear pore complex, nuclear lamina, molecular organization of chromatin; nucleolus.	3 lectures
	Cytoskeleton: Role and structure of microtubules, microfilaments and intermediary filament Chloroplast, mitochondria and peroxisomes: Structural organization; Function; Semiautonomous nature of mitochondria and chloroplast.	2 lectures
	Endoplasmic Reticulum, Golgi Apparatus, Lysosomes	2 lectures

UNIT -V	Cell division: Eukaryotic cell cycle, different stages of mitosis and meiosis. Cell	6 lectures
	cycle, Regulation of cell cycle.	

BOTANY CORE

PRACTICALS(20 CLASES OF 2 hours duration)

PRACTICALS	1.Qualitative tests for carbohydrates, reducing sugars, non-reducing
	sugars, lipids and proteins
	2.Study of plant cell structure with the help of epidermal peel mount o
	Onion/Rhoeo/Crinum.f
	3.Demonstration of the phenomenon of protoplasmic streaming in <i>Hydrilla</i>
	leaf.
	4.Measurement of cell size by the technique of micrometry.
	5.Counting the cells per unit volume with the help of haemocytometer.
	(Yeast/pollen grains)
	6.Study of cell and its organelles with the help of electron micrographs.
	7.Study the phenomenon of plasmolysis and deplasmolysis.
	8.Study different stages of mitosis and meiosis using aceto carmine and
	aceto orcine methods

Suggested Readings

- 1. Campbell, MK (2012) Biochemistry, 7th ed., Published by Cengage Learning
- 2. Campbell, PN and Smith AD (2011) Biochemistry Illustrated, 4th ed., Published by Churchill Livingstone.
- 3. Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- 4. Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company
- 5. Nelson DL and Cox MM (2008) Lehninger Principles of Biochemistry, 5th Edition., W.H. Freemanand Company.
- 6. Karp, G. (2010). Cell Biology, John Wiley & Sons, U.S.A. 6th edition.
- 7. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc.U.S.A. 8th edition.

- 8. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. ASM Press &Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 9. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009 The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Fra

SEMESTER-II

BOTANY CORE

<u>Core Course III</u>: Mycology and Phytopathology – 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction to true fungi: Definition, General characteristics; 5 lectures
	Affinities with plants and animals; Thallus organization; Cellwall
	composition; Nutrition; Classification. Chytridiomycetes: General
	account
	Zygomycota: General characteristics; Ecology; Thallus organisation; 4 lectures Life cycle with reference to <i>Rhizopus</i> .
	Ascomycota: General characteristics (asexual and sexual fruiting bodies); Ecology; Life cycle, Heterokaryosis and parasexuality; life cycle and classification with reference to <i>Aspergillus, Penicillium, Alternaria</i> and <i>Neurospora</i> ,.
Unit-II	Basidiomycota: General characteristics; Ecology; Life cycle and 5 lectures
	Classification with reference to black stem rust on wheat Puccinia
	(Physiological Specialization), loose and covered smut (symptoms only),
	Agaricus;.
	Allied Fungi: General characterises; Status of Slime molds, 3 lectures
	Classification; Occurrence; Types of plasmodia; Types of fruiting bodies.
	Oomycota: General characteristic; Ecology; Life cycle and classification 4 lectures
	with reference to Phytophthora, Albugo.
Unit-III	Symbiotic associations: Lichen - Occurrence; General characteristics; 4 lectures
	Growth forms and range of thallus organization; Nature of associations of
	algal and fungal partners; Reproduction.Mycorrhiza-Ectomycorrhiza,
	Endomycorrhiza and their significance.
Unit-IV	Applied Mycology: Role of fungi in biotechnology, Application of fungi 5 Lectures
	in food industry (Flavour & texture, Fermentation, Baking, Organic
	acids, Enzymes, Mycoproteins); Secondary metabolites (Pharmaceutical
	preparations); Agriculture (Biofertilizers); Mycotoxins; Biological

	control (Mycofungicides, Mycoherbicides, Mycoinsecticides,
	Myconematicides); Medical mycology.
Unit-V	Phytopathology: Terms and concepts; General symptoms; Geographical 5 lectures
	distribution of diseases; etiology; symptomology; Host- Pathogen
	relationships; disease cycle and environmental relation; prevention and
	control of plant diseases, and role of quarantine. Bacterial diseases -
	Citrus canker and angular leaf spot disease of Cotton.Viral diseases -
	Tobacco Mosaic viruses, vein clearing. Fungal diseases - Early blight of
	potato, Black stem rust of wheat, white rust of crucifers

BOTANY CORE

PRACTICALS (20 CLASSES OF 2HOURS)		
PRACTICALS	1. Introduction to the world of fungi (Unicellular, coenocytic/septate	
	mycelium, asocarps &basidiocarps).	
	2. Rhizopus: study of asexual stage from temporary mounts and sexual	
	structures through permanent slides.	
	3. Aspergillus and Penicillium: study of asexual stage from temporary	
	mounts. Study of Sexual stage from permanent slides/photographs	
	4.Alternaria: Specimens/photographs and temporary mounts.	
	5.Puccinia: Herbarium specimens of Black Stem Rust of Wheat and	
	infectedBarberryleaves; sections/ mounts of spores on wheat and permanent	
	slides of both the hosts.	
	6. Agaricus: Specimens of button stage and full grown mushroom; sectioning	
	of gills of Agaricus, fairy rings and bioluminescent mushrooms to be shown.	
	7. Albugo: Study of symptoms of plants infected with Albugo; asexual phase	
	study through section/ temporary mounts and sexual structures through	
	permanent slides.	
	8. Lichens: Study of growth forms of lichens (crustose, foliose and	
	fruticose) on different substrates. Study of thallus and reproductive	
	structures (soredia and apothecium) through permanent slides. Mycorrhizae:	
	ectomycorrhiza and endo mycorrhiza (Photographs)	

Suggested Readings

- 1. Agrios, G.N. 1997 Plant Pathology, 4th edition, Academic Press, U.K.
- 2. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley & Sons(Asia) Singapore. 4th edition.
- 3. Webster, J. and Weber, R. (2007). Introduction to Fungi, Cambridge University Press, Cambridge. 3rdedition.
- 4. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi and Their Allies, Macmillan Publishers IndiaLtd.
- 5. Sharma, P.D. (2011). Plant Pathology, Rastogi Publication, Meerut, Indi

SEMESTER-II

BOTANY CORE

Core Course IV: Archegoniate - 100 marks (Credits-6 Theory-4, Practical 2)

THEORY (Each class 1 hour): **PRACTICAL** (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory +20 Practical classes]

Unit-I	Introduction: Unifying features of archegoniates; Transition to land	2 lectures
	habit; Alternation of generations. Types of life cycles, Sporophytic	
	generation, gametophytic generation.	
Unit-II	Bryophytes: General characteristics; Adaptations to land habit;	12 lectures
	Classification; Range of thallus organization. Classification (up to	
	family). Riccia, Marchantia, Pellia, Porella, Anthoceros, Sphagnum and	
	Funaria; Reproduction and evolutionary trends in Riccia, Marchantia,	
	Anthoceros and Funaria (developmental stages not included).	
	Ecological and economic importance of bryophytes.	
Unit-III	Pteridophytes: General characteristics, classification. Classification	10 lectures
	(up to family), morphology, anatomy and reproduction of Psilotum,	
	Selaginella, Equisetum and Pteris.(Developmental details not to be	
	included). Apogamy, and apospory, heterospory and seed habit, telome	
	theory, stelar evolution. Ecological and economic importance.	

Unit-IV	Gymnosperms: General characteristics, classification (up to family), 8 lectures)
	morphology, anatomy and reproduction of Cycas, Pinus, Ginkgo and
	Gnetum. (Developmental details not to be included). Ecological and
	economic importance.
Unit-V	Fossils: Geographical time scale, fossils and fossilization process. 8 lectures
	Morphology, anatomy and affinities of Rhynia, Calamites,
	Lepidodendron, Lyginopteris and Cycadeoidea.

PRACTICAL (20CLASSES OF 2 HOURS duration)

BOTANY CORE

`	,
PRACTICAL	Riccia - Morphology of thallus.
	Marchantia- Morphology of thallus, whole mount of Gemmae (all temporary
	slides), longitudinal section of Sporophyte (all permanent slides).
	Anthoceros- Morphology of thallus, dissection of sporophyte (temporary
	slide), vertical section of thallus (permanent slide).
	Pellia, Porella- Permanent slides.
	Sphagnum- Morphology of plant, whole mount of leaf (permanent slide
	only).
	Funaria- Morphology, rhizoids, operculum, peristome, annulus, spores
	(temporary slides); permanent slides showing antheridial and archegonial
	heads, and protonema.
	.Psilotum- Study of specimen, transverse section of synangium (permanent
	slide).
	Selaginella- Morphology, whole mount of leaf with ligule, transverse section
	of stem, longitudinal section of strobilus (permanent slide .
	Equisetum- Morphology, transverse section of internode, transverse section
	of strobilus, whole mount of sporangiophore, whole mount of spores (wet
	and dry) (temporary slide), transverse section of rhizome (permanent slides)
	Pteris- Morphology, transverse section of rachis, transverse section of
	rhizome, whole mount of prothallus with sex organs and young sporophyte
	(permanent slide).

Cycas- Morphology (coralloid roots, bulbil, leaf), transverse section of coralloid root, transverse section of rachis, longitudinal section of ovule, transverse section of root (permanent slide).

Pinus- Morphology (long and dwarf shoots, whole mount of dwarf shoot, male and female cones), transverse section of Needle, transverse section of stemlongitudinal section of female cone, tangential longitudinal section & radial longitudinal sections stem (permanent slide).

Gnetum- Morphology (stem, male & female cones), transverse section of stem, vertical section of ovule (permanent slide)

14. Botanical excursion.

Suggested Readings

- 1. Vashistha, P.C., Sinha, A.K., Kumar, A. (2010). Pteridophyta. S. Chand. Delhi, India.
- 2. Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, NewDelhi, India.
- 3. Parihar, N.S. (1991). An introduction to Embryophyta: Vol. I. Bryophyta. Central Book Depot.Allahabad.
- 4. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R. (2005). Biology. Tata McGraw Hill, Delhi.
- 5. Vander-Poorteri 2009 Introduction to Bryophytes. COP

SEMESTER-III

BOTANY CORE

<u>Core Course V:</u> Anatomy of Angiosperms - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction and scope of Plant Anatomy: Applications in	2 lectures
	systematics, forensics and pharmacognosy.	
	Tissues: Classification of tissues; Simple and complex tissues (no	5 Lectures
	phylogeny); cytodifferentiation of tracheary elements and sieve	
	elements; Pits and plasmodesmata; Wall ingrowths and transfer cells,	
	adcrustation and incrustation, Ergastic substances.	
Unit-II	Stem: Organization of shoot apex (Apical cell theory, Histogen theory,	5 Lectures
	Tunica Corpus theory, continuing meristematic residue,	
	cytohistological zonation); Types of vascular bundles; Structure of	
	dicot and monocot stem.	
	Leaf: Structure of dicot and monocot leaf, Kranz anatomy.	4 lectures
	Root: Organization of root apex (Apical cell theory, Histogen theory,	4 Lectures
	Korper-Kappe theory); Quiescentcentre; Root cap; Structure of dicot	
	and monocot root; Endodermis, exodermis and origin oflateral root.	
Unit-III	Vascular Cambium: Structure, function and seasonal activity of	4 Lectures
	cambium; Secondary growth in root and stem.	
	Wood: Axially and radially oriented elements; Types of rays and axial	5 Lectures
	parenchyma; Sapwood and heartwood; Ring and diffuse porous	
	wood; Early and late wood, tyloses; Dendrochronology.	
	Periderm: Development and composition of periderm, rhytidome and	3 Lectures
	lenticels.	
Unit -IV	Adaptive and Protective Systems Epidermal tissue system, cuticle,	5 Lectures
	epicuticular waxes, trichomes(uni-and multicellular, glandular	
	and nonglandular, two examples of each), stomata	
	(classification); Anatomical adaptations of xerophytes and hydrophytes.	
UNIT-V	Secretory System: Hydathodes, cavities, lithocysts and laticifers.	3 Lectures

PRACTICALS (20CLASSES OF 2 HOURS duration)

PRACTICALS

- 1. Study of anatomical details through permanent slides/temporary stainmounts/macerations/ museum specimens with the help of suitable examples.
- 2. Apical meristem of root, shoot and vascular cambium.
- 3. Distribution and types of parenchyma, collenchyma and sclerenchyma.
- 4. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibres.
- 5. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
- 6. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.
- 7. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.
- 8. Root: monocot, dicot, secondary growth.
- 9. Stem: monocot, dicot primary and secondary growth; periderm; lenticels.
- 10.Leaf: isobilateral, dorsiventral, C4 leaves (Kranz anatomy).
- 11. Adaptive Anatomy: xerophytes, hydrophytes.
- 12. Secretory tissues: cavities, lithocysts and laticifers.

Suggested Readings:

- 1. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA
- 4. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.

SEMESTER-III

BOTANY CORE

<u>Core Course VI</u>: Economic Botany - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Origin of Cultivated Plants: Concept of Centres of Origin, their	3 lectures
	importance with reference to Vavilov's work. Examples of major plant	
	introductions; Crop domestication and loss of genetic diversity;	
	evolution of new crops/varieties, importance of germplasm diversty.	
Unit-II	Cereals: Wheat and Rice (origin, morphology, processing & uses),	3 lectures
	brief account of millets.	
	Legumes: General account, importance to man and	3 lectures
	ecosystem.	
	Sugars & Starches: Morphology and processing of sugarcane,	
	products and by-products of sugarcane industry. Potato - morphology,	
	propagation & uses.	
Unit-III	Spices: Listing of important spices, their family and part used,	
	economic importance with specialreference to fennel, saffron, clove and	
	black pepper	
	Beverages: Tea, Coffee (morphology, processing	4 lectures
	&uses)	
	Drug-yielding plants: Therapeutic and habit-forming drugs with	4 lectures
	specialreference to Cinchona, Digitalis, Papaver and Cannabis.	
	Tobacco: Tobacco (Morphology, processing, uses and health hazards)	
Unit-IV	Oils & Fats: General description, classification, extraction, their uses	4 lectures
	and health implications groundnut, coconut, linseed and Brassica and	
	Coconut (Botanical name, family & uses)	
	Essential Oils: General account, extraction methods, comparison with	4 lectures
	fatty oils & their uses.	
Unit-V	Natural Rubber: Para-rubber: tapping, processing and	2 lectures
	uses.	
	Timber plants: General account with special reference to teak and	2 Lectures
	pine.	
	Fibres: Classification based on the origin of fibres, Cotton and Jute	2 lectures
	(morphology, extraction and uses).	

BOTANY CORE

PRACTICALS (20 CLASSES OF 2 HOURS DURATION)

PRACTICALS	1. Cereals: Rice (habit sketch, study of paddy and grain, starch grains,
	micro-chemical tests).

- **2. Legumes:** Soya bean, Groundnut, (habit, fruit, seed structure, microchemical tests).
- **3. Sugars & Starches:** Sugarcane (habit sketch; cane juice- microchemical tests),

Potato(habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, w.m. starch grains, micro-chemical tests).

- **4. Spices:** Black pepper, Fennel and Clove (habit and sections).
- **5. Beverages:** Tea (plant specimen, tea leaves), Coffee (plant specimen, beans).
- **6. Oils & Fats:** Coconut- T.S. nut, Mustard-plant specimen, seeds; tests for fats incrushedseeds.
- **7. Essential oil-yielding plants:** Habit sketch of *Rosa*, Vetiveria, Santalum and Eucalyptus (specimens/photographs).
- **8. Rubber:** specimen, photograph/model of tapping, samples of rubber products.
- **9. Drug-yielding plants:** Specimens of *Digitalis, PapaverandCannabis*.
- **10.Tobacco:** specimen and products of Tobacco.
- 11. Woods: Tectona, Pinus: Specimen, Section of young stem.
- **12. Fibre-yielding plants:** Cotton (specimen, whole mount of seed to show lint andfuzz; whole mount of fibre and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fibre).

Suggested Readings

- 1. Kochhar, S.L. (2012). Economic Botany in Tropics, MacMillan & Co. New Delhi, India.
- 2. Wickens, G.E. (2001). Economic Botany: Principles & Practices. Kluwer Academic Publishers, The Netherlands.
- **3.** Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones & Bartlett Publisher

SEMESTER-III BOTANY CORE

Core Course VII: Genetics - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

	·
Unit-I	Mendelian genetics and its extension Mendelism: History; Principles 16 lectures
	of inheritance; Chromosome theory of inheritance; Autosomes and sex
	chromosomes; Probability and pedigree analysis; Incomplete
	dominance and codominance; Multiple alleles, Lethal alleles, Epistasis,
	Pleiotropy, Recessive and Dominant traits, Penetrance and
	Expressivity, Numericals; Polygenic inheritance.
Unit-II	Extrachromosomal Inheritance: Chloroplast mutation: Variegation in 6 lectures
	Four o'clock plant; Mitochondrial mutations in yeast; Maternal effects-
	shell coiling in snail; Infective heredity- Kappa particles in
	Paramecium.
Unit-III	Linkage, crossing over and chromosome mapping: Linkage and 12 lectures
	crossing over-Cytological basis of crossing over; Recombination
	frequency, two factor and three factor crosses; Interference and
	coincidence; Numericals based on gene mapping; Sex Linkage.
Unit-IV	Variation in chromosome number and structure: Deletion, 8 lectures
	Duplication, Inversion, Translocation, Position effect, Euploidy and
	Aneuploidy
	Gene mutations: Types of mutations; Molecular basis of Mutations; 6 lectures
	Mutagens - physical and chemical (Base analogs, deaminating,
	alkylating and intercalating agents); Detection of mutations: CIB
	method. Role of Transposons in mutation.DNA repair mechanisms.
Unit-V	Fine structure of gene: Classical vs molecular concepts of gene; Cis- 6 lectures
	Trans complementation test for functional allelism; Structure of Phage
	T4, rII Locus.
	Population and Evolutionary Genetics: Allele frequencies, Genotype 6 lectures
	frequencies, Hardy-Weinberg Law, role of natural selection, mutation,
	genetic drift. Genetic variation and Speciation.

BOTANY CORE

PRACTICALS (20 CLASSES OF 2 HOURS DURATION)

PRACTICALS

- 1. Meiosis through temporary squash preparation.
- 2. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-square analysis.
- 3. Chromosome mapping using test cross data.
- 4. Pedigree analysis for dominant and recessive autosomal and sex linked traits with floral chart.
- 5. Incomplete dominance and gene interaction through seed ratios (9:7, 9:6:1, 13:3, 15:1,

12:3:1, 9:3:4).

6. Blood Typing: ABO groups & Rh factor.

Suggested Readings:-

- 1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India.8th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics, John Wiley & Sons Inc., India. 5thedition.
- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings,

U.S.A. 10th edition.

4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W.H. Freeman and Co., U.S.A. 10th edition.

SEMESTER-IV

BOTANY CORE

Core Course VIII: Molecular Biology - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

UNIT-I	Nucleic acids: Carriers of genetic information: Historical	4 lectures
	perspective; DNA as the carrier of genetic information (Griffith's,	
	Hershey & Chase, Avery, McLeod & McCarty, Fraenkel-Conrat's	
	experiment.	
UNIT-II	The Structures of DNA and RNA / Genetic Material: DNA	8 lectures

	Structure: Miescher to Watson and Crick- historic perspective, DNA	
	structure, Salient features of double helix, Types of DNA, Types of	
	genetic material, denaturation and renaturation, cot curves;	
	Organization of DNA-Prokaryotes, Viruses, Eukaryotes. RNA	
	Structure- Organelle DNA -mitochondria and chloroplast DNA.The	
	Nucleosome -Chromatin structure-Euchromatin, Heterochromatin-	
	Constitutive and Facultative heterochromatin.	
	The replication of DNA: Chemistry of DNA synthesis (Kornberg's	6 lectures
	discovery); General principles - bidirectional, semi-conservative and	
	semi discontinuous replication, RNA priming; Various models of	
	DNA replication, including rolling circle, 9 (theta) mode of	
	replication, replication of linear ds-DNA, replication of the 5'end of	
	linear chromosome; Enzymes involved in DNA replication.	
UNIT-III	Central dogma and genetic code: Key experiments establishing-	2 lectures
	The Central Dogma (Adaptor hypothesis and discovery of M rna	
	template), Genetic code (deciphering & salient features)	
	Mechanism of Transcription: Transcription in prokaryotes;	4 lectures
	Transcription in eukaryotes.	
	Split genes-concept of introns and exons, removal of introns,	5 lectures
	spliceosome machinery, splicing pathways, group I & group II intron	
	splicing, alternative splicing eukaryotic mRNA processing(5' cap, 3'	
	polyA tail); Ribozymes, exon shuffling.	
UNIT-IV	Translation (Prokaryotes and eukaryotes): Ribosome structure	6 lectures
	and assembly, mRNA; Charging of tRNA, aminoacyl tRNA	
	synthetases; Various steps in protein synthesis, proteins involved in	
	initiation, elongation and termination of polypeptides.	
UNIT-V	Regulation of transcription in prokaryotes and eukaryotes:	5 lectures
	Principles of transcriptional regulation; Prokaryotes: Regulation of	
	lactose metabolism and tryptophan synthesis in <i>E.coli</i> . Eukaryotes:	
	transcription factors.	

BOTANY CORE

PRACTICALS (20 CLASSES OF 2 HOURS EACH)

PRACTICALS

- 1. Preparation of LB medium and raising *E.Coli*.
- 2. RNA estimation by orcinol method.
- 3. DNA estimation by diphenylamine reagent/UV Spectrophotometry.
- 5. Study of DNA replication mechanisms through photographs (Rolling circle, Theta replication and semi-discontinuous replication).
- <u>6</u>. Study of structures of prokaryotic RNA polymerase and eukaryotic RNA polymerase II through photographs.
- 7. Photographs establishing nucleic acid as genetic material (Messelson and Stahl's, Avery et al, Griffith's, Hershey & Chase's and Fraenkel & Conrat's experiments)
- 8.Study of the following through photographs: Assembly of Spliceosome machinery; Splicing mechanism in group I & group II introns; Ribozyme and Alternative splicing.

Suggested Readings

- 1. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th

edition.

- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings.U.S.A. 9th edition.
- 4. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 5. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W.H. Freeman and Co., U.S.A. 10th edition

SEMESTER-IV

BOTANY CORE

Core Course IX: Plant Ecology and Phytogeography - 100 marks (Credits-6: Theory-4, Practical-2) Theory (each class 1 hour) PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction Concept of ecology, Autoecology, Synecology, system 2	2 lectures
	ecology, Levels of organization. Inter-relationships between the living	
	world and the environment, the components of environmental, concept	
	of hydrosphere and lithosphere and dynamism, homeostasis.	
Unit-II	Soil: Importance; Origin; Formation; Composition; Physical; Chemical 5	lectures
	and Biological components; Soil profile; Role of climate in soil	
	development.	
	Water: Importance: States of water in the environment; Atmospheric 2	2 lectures
	moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological	
	Cycle; Water in soil; Water table.	
	Light, temperature, wind and fire: Variations; adaptations of plants 4	lectures
	to their variation.	
Unit-III	Population ecology: Characteristics and Dynamics .Ecological 4	lectures
	Speciation	
	Plant communities: Concept of ecological amplitude; Habitat and 4	lectures
	niche; Characters: analytical and synthetic; Ecotone and edge effect;	
	Dynamics: succession - processes, types; climax concepts.	
Unit-IV	Ecosystems: Structure; Processes; Trophic organisation; Food chains 4	lectures
	and Food webs; Ecological pyramids.	
	Functional aspects of ecosystem: Principles and models of energy 5	lectures
	flow; Production and productivity; Ecological efficiencies;	
	Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.	
Unit-V	Phytogeography: Principles; Continental drift; Theory of tolerance; 7	7 lectures
	Endemism; Brief description of major terrestrial biomes (one each from	
	tropical, temperate & tundra); Phytogeographical division of India;	

Local Vegetation.

BOTANY CORE

PRACTICALS (20 CLASSES OF 2 HOURS EACH)

PRACTICALS

- 1. Determination of pH of various soil and water samples (pH meter,universal indicator/Lovibond comparator and pH paper)
- 2. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.
- 3. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.
- 4. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.
- 5(a). Study of morphological adaptations of hydrophytes and xerophytes (four each).
- (b). Study of biotic interactions of the following: Stem parasite (*Cuscuta*), Root parasite(*Orobanche*) Epiphytes, Predation (Insectivorous plants).
- 6.Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).
- 7. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer's frequency distribution law.
- 8.Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.
- 9. Field visit to familiarize students with ecology of different sites.

Suggested Readings

- 1. Odum, E.P. (2005). Fundamentals of ecology. Cengage Learning India Pvt. Ltd., New Delhi. 5thedition.
- 2. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya

Publications, New Delhi, India.

- 3. Sharma, P.D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
- 4. Wilkinson, D.M. (2007). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford

University Press. U.S.A.

5. Kormondy, E.J. (1996). Concepts of ecology. PHI Learning Pvt. Ltd., Delhi, India. 4th edition.

SEMESTER-IV

BOTANY CORE

Core Course X: Plant Systematics – 100 marks(Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

	Identification: Field inventory; Functions of Herbarium; Important herbaria	
	Tuesterious i feld inventory, i dilettons of iteroariam, important neroaria	5 lectures
	and botanical gardens of the world and India; Virtual herbarium; E-flora;	
	Documentation: Flora, Monographs, Journals; Keys: Single access and	
	Multi-access	
Unit-II	Taxonomic hierarchy: Concept of taxa (family, genus, species); Categories	5 lectures
	and taxonomic hierarchy; Species concept (taxonomic, biological,	
	evolutionary).	
-	Botanical nomenclature: Principles and rules (ICN); Ranks and names;	5 lectures
	Typification, author citation, valid publication, rejection of names, principle	
	of priority and its limitations; Names of hybrids	
Unit-III	Systematics- an interdisciplinary science: Evidence from palynology,	
	cytology, phytochemistry and molecular data.	
-	Systems of classification: Major contributions of Theophrastus, Bauhin,	6 lectures
	Tournefort, Linnaeus, Adanson, de Candolle, Bessey, Hutchinson,	
	Takhtajan	
	and Cronquist; Classification systems of Bentham and Hooker (upto series)	
	and Engler and Prantl (upto series); Brief reference of Angiosperm	
Unit-IV	Biometrics, numerical taxonomy and cladistics: Characters; Variations;	4 lectures
	OTUs, character weighting and coding; cluster analysis; Phenograms,	
	cladograms (definitions and differences).	
Unit-V	Phylogeny of Angiosperms: Terms and concepts (primitive and advanced,	7 lectures
	homology and analogy, parallelism and convergence, monophyly,	

Paraphyly, polyphyly and clades).origin& evolution of angiosperms;
coevolutionof angiosperms and animals; methods of illustrating
evolutionary
relationship (phylogenetic tree, cladogram).

Practical (20 classes, each class of 2h)

Practical

1. Study of vegetative and floral characters of the following families (Description, V.S.

flower, section of ovary, floral diagram/s, floral formula/e and systematic position according to Bentham & Hooker's system of classification):

Ranunculaceae - Ranunculus, Delphinium

Brassicaceae - Brassica, Alyssum / Iberis

Myrtaceae - Eucalyptus, Callistemon

Umbelliferae - Coriandrum / Anethum / Foeniculum

Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax

Solanaceae - Solanum nigrum/Withania

Lamiaceae - Salvia/Ocimum

Euphorbiaceae - Euphorbia hirta/E.milii, Jatropha

Liliaceae - Asphodelus/Lilium/Allium

Poaceae - Triticum/Hordeum/Avena

- 2. Field visit (local) Subject to grant of funds from the university.
- 3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label

(to be submitted in the record book)

Suggested Readings

- 1. Singh, G. (2012). *Plant Systematics:* Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition.
- 2. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 4. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi.
- 5. Radford, A.E. (1986). Fundamentals of *Plant Systematics*. Harper and Row, New York.

SEMESTER-V

Core Course XI:Reproductive Biology of Angiosperms-100 marks(Credits-6:Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks(Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction: History (contributions of G.B. Amici, W. Hofmeister, E. Strasburger, S.G. Nawaschin, P. Maheshwari, B.M. Johri, W.A. Jensen, J. Heslop-Harrison) and scope.	2 lectures				
Unit-II	Anther: Anther wall: Structure and functions, microsporogenesis, callose deposition and its significance.	2 lectures				
	Pollen biology: Microgametogenesis; Pollen wall structure, MGU (male germ unit) structure, NPC system; Palynology and scope (a brief account); Pollen wall proteins; Pollen viability, storage and germination; Abnormal features: Pseudomonads, polyads, massulae, pollinia.					
Unit-III	Ovule: Structure; Types; Special structures endothelium, obturator, aril, caruncle and hypostase; Female gametophytemegasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of <i>Polygonum</i> type); Organization and ultrastructure of mature embryo sac.					
	Endosperm: Types, development, structure and functions.	3 lectures				
	Embryo: Six types of embryogeny; General pattern of development of dicot and monocot embryo; Suspensor: structure and functions; Embryo-endosperm relationship; Nutrition of embryo; Unusual features; Embryo development in <i>Paeonia</i> .					
Unit-IV	Pollination and fertilization: Pollination types and significance; adaptations; structure of stigma and style; path of pollen tube in pistil; double fertilization.	4 lectures				
	Self incompatibility: Basic concepts (interspecific, intraspecific, homomorphic, heteromorphic, GSI and SSI); Methods to overcome self-incompatibility: mixed pollination, bud pollination,	7 lectures				
Unit-V	Seed: Structure, importance and dispersal mechanisms	3 lectures				
	Polyembryony and apomixes: Introduction; Classification; Causes and applications.	4 lectures				
	Germline transformation: Pollen grain and ovules through pollen tube pathway method.	2 lectures				

BOTANY CORE

Practical (20 classes, each class of 2h)

Practical

- 1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular); MMC, spore tetrads, uninucleate, bicelled and dehisced anther stages through slides/micrographs, male germ unit (MGU) through photographs and schematic representation.
- 2. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs,fresh material), ultrastructure of pollen wall(micrograph); Pollen viability: Calculation of germination in different media using hanging drop method.
- 3. Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous, unitegmic, bitegmic; Tenuinucellate and crassinucellate; Special structures:

 Endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/photographs).
- 4. Female gametophyte through permanent slides/ photographs: Types, ultrastructure of mature egg apparatus.
- 5. Intra-ovarian pollination; Test tube pollination through photographs.
- 6. Endosperm: Dissections of developing seeds for endosperm with free-nuclear haustoria.
- 7. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.

Suggested Readings:

- 1. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms, Vikas Publishing House. Delhi. 5th edition.
- 2. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 3. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 4. Johri, B.M. 1 (1984). Embryology of Angiosperms, Springer-Verlag, Netherland

SEMESTER-V

BOTANY CORE

Core Course XII: Plant Physiology - 100 marks(Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours

[75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Plant water relationship: Water Potential and its components, water	6 lectures				
	absorption by roots, aquaporins, pathway of water movement, symplast,					
	apoplast, transmembrane pathways, root pressure, guttation. Ascent of					
	sap-cohesion-tension theory. Transpiration and factors affecting					
	transpiration, anti transpirants, mechanism of stomatal movement.					
	Translocation in the phloem: Experimental evidence in support of					
	phloem as the site of sugar translocation. Pressure-Flow Model; Phloem					
	loading and unloading; Source-sink relationship.					
Unit-II	Mineral nutrition: Essential and beneficial elements, macro and	5 lectures				
	micronutrients, methods of study and use of nutrient solutions, criteria					
	for essentiality, mineral deficiency symptoms, roles of essential					
	elements, chelating agents.					
	N. C. S. C.					
Unit-III	Nutrient Uptake: Soil as a nutrient reservoir, transport of ions across	5 lectures				
Unit-III	Nutrient Uptake: Soil as a nutrient reservoir, transport of ions across cell membrane, passive absorption, electrochemical gradient, facilitated	5 lectures				
Unit-III		5 lectures				
Unit-III	cell membrane, passive absorption, electrochemical gradient, facilitated	5 lectures				
Unit-III Unit-IV	cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems,proton ATPase	5 lectures 10 lectures				
	cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems,proton ATPase pump and ion flux, uniport, co-transport, symport, antiport.					
	cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems,proton ATPase pump and ion flux, uniport, co-transport, symport, antiport. Plant growth regulators: Discovery, chemical nature (basic structure),					
	cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems,proton ATPase pump and ion flux, uniport, co-transport, symport, antiport. Plant growth regulators: Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin,					
Unit-IV	cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems,proton ATPase pump and ion flux, uniport, co-transport, symport, antiport. Plant growth regulators: Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene.	10 lectures				
Unit-IV	cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems,proton ATPase pump and ion flux, uniport, co-transport, symport, antiport. Plant growth regulators: Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene. Physiology of flowering: Photoperiodism, flowering stimulus, florigen	10 lectures				
Unit-IV	cell membrane, passive absorption, electrochemical gradient, facilitated diffusion, active absorption, role of ATP, carrier systems,proton ATPase pump and ion flux, uniport, co-transport, symport, antiport. Plant growth regulators: Discovery, chemical nature (basic structure), bioassay and physiological roles of Auxin, Gibberellins, Cytokinin, Abscisic acid, Ethylene. Physiology of flowering: Photoperiodism, flowering stimulus, florigen concept, vernalization, seed dormancy.	10 lectures 4 lectures				

BOTANY CORE

Practical (20 classes, each class of 2h)

Practical

- 1. Determination of osmotic potential of plant cell sap by plasmolytic method.
- 2. Determination of water potential of given tissue (potato tuber) by weight method.
- 3. Study of the effect of light on the rate of transpiration in excised twig/leaf.
- 4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.
- 5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
- 6. To study the phenomenon of seed germination (effect of light).
- 7. To study the induction of amylase activity in germinating barley grains.

Demonstration experiments

- 1. To demonstrate suction due to transpiration.
- 2. Fruit ripening/Rooting from cuttings (Demonstration).

Bolting experiment/Avena coleptile bioassay (demonstration)

Suggested Readings:

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., Moller, I.M. and Murphy, A (2015). Plant Physiology and Development Sinauer Associates Inc. USA. 6th edition.
- 3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual Narosa Publishing House, New Delhi.

SEMESTER-VI

BOTANY CORE

Core Course XIII: Plant Metabolism - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)[
75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Concept of metabolism: Introduction, anabolic and catabolic 5 lectures
	pathways,regulation of metabolism, role of regulatory enzymes
	(allosteric and Isozymes).
	Carbohydrate metabolism: Synthesis and catabolism of starch. 1 lectures

Unit-II	Carbon assimilation: Historical background, photosynthetic pigments, 10 lectures				
	role of photosynthetic pigments (chlorophylls and accessory pigments),				
	antenna molecules and reaction centres, photochemical reactions,				
	photosynthetic electron transport, PSI, PSII, Q cycle, CO ₂ reduction,				
	photorespiration, C4pathways; Crassulacean acid metabolism; Factors				
	affecting CO ₂ reduction.				
Unit-III	Carbon Oxidation: Glycolysis, fate of pyruvate, regulation of 6 lectures				
	glycolysis, oxidative pentose phosphate pathway, oxidative				
	decarboxylation of pyruvate, regulation of PDH, NADH shuttle; TCA				
	cycle, , mitochondrial electron transport, oxidative phosphorylation,				
	factors affecting respiration.				
	ATP-Synthesis: Mechanism of ATP synthesis, substrate level 4 lectures				
	phosphorylation, chemiosmotic mechanism (oxidative and				
	photophosphorylation), ATP synthase,				
Unit-IV	Lipid metabolism: Synthesis and breakdown of triglycerides, β- 5 lectures				
	oxidation, glyoxylate cycle, gluconeogenesis and its role in				
	mobilisation of lipids during seed germination, α- oxidation.				
Unit-V	Nitrogen metabolism: Nitrate assimilation, biological nitrogen 5 lectures				
	fixation (examples of legumes and non-legumes); Physiology and				
	biochemistry of nitrogen fixation; Ammonia assimilation and				
	transamination.				

Practical (20 classes, each class of 2h)

Practical	
	1. Chemical separation of photosynthetic pigments.
	2. Experimental demonstration of Hill's reaction.
	3. To study the effect of light intensity on the rate of photosynthesis.
	4. Effect of carbon dioxide on the rate of photosynthesis.
	5. To compare the rate of respiration in different parts of a plant
	6. To study the activity of lipases in germinating oilseeds and demonstrate
	mobilization of lipids during germination.
	7.Demonstration of fluorescence by isolated chlorophyll pigments.
	8. Demonstration of absorption spectrum of photosynthetic pigments.

Suggested Readings:

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A.4th edition.
- 2. Taiz, L., Zeiger, E., M0ller, I.M. and Murphy, A (2015). Plant Physiology and Development. SinauerAssociates Inc. USA. 6th edition.
- 3. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.

Core Course XIV: Plant Biotechnology - 100 marks(Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15+ End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Plant Tissue Culture: Historical perspective; Aseptic tissue culture techniques, Composition of media; Nutrient and hormone requirements (role of vitamins and hormones).	
Unit-II	Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation).	
Unit-III	Recombinant DNA technology-I: Restriction Endonucleases (History, Types I-IV, biological role and application); Restriction Mapping (Linear and Circular); Cloning Vectors: Prokaryotic (pUC 18 and pUC19, pBR322, Ti plasmid, BAC); Lambda phage, M13 phagemid, Cosmid, Shuttle vector; Eukaryotic Vectors (YAC) Gene Cloning (Recombinant DNA, Bacterial Transformation and selection of recombinant clones, PCR-mediated gene cloning).	
Unit-IV	Recombinant DNA technology-II: Gene Construct; construction of genomic and cDNA libraries, screening DNA libraries to obtain geneof interest by genetic selection; complementation, colony hybridization; Probes-oligonucleotide, heterologous, PCR; Methods of gene transfer-Agrobacterium-mediated, Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment; Selection of transgenics-selectable marker and reporter genes (Luciferase, GUS, GFP).	
Unit-V	Applications of Biotechnology: Pest resistant (Bt-cotton); herbicide resistant plants (Round Up Ready soybean); Transgenic crops with improved quality traits (Flavr Savr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug); edible vaccines; Industrial enzymes (Aspergillase, Protease, Lipase); Gentically Engineered Products-Human Growth Hormone; Humulin; Biosafety concerns.	

PRACTICALS (20 CLASSES OF 2 HOURS EACH)

PRACTICALS

- 1. (a) Preparation of MS medium.
 - (b) Demonstration of *in vitro* sterilization and inoculation methods using leaf and nodal explants of tobacco, *Datura, Brassica* etc.
- 2.Study of anther, embryo and endosperm culture, micro propagation, somatic Embryogenesis & artificial seeds through photographs.
- 3. Construction of restriction map of circular and linear DNA from the data provided.
- 4. Study of methods of gene transfer through photographs: *Agrobacterium*-mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment.
- 5. Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savrtomato through photographs.
- 6.Restriction digestion and gel electrophoresis of plasmid DNA.(Demonstration)

SUGGESTED READINGS

- 1. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 3. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications Of recombinant DNA. ASM Press, Washington.
- 4. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms.

Vikas Publication HousePvt. Ltd., New Delhi. 5th edition.

- 5. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics.
- John Wiley and Sons, U.K. 5thedition.
- 6. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 7. Chawla, H.S. (2010). Introduction to Plant Biotechnology.

Oxford & IBH Publishing Co.Pvt Ltd., New Delhi.

7. Singh, B. D. (2010) Biotechnology: Expanding Horizon. Kalyani Publishers. New Delhi

KHALLIKOTE UNIVERSITY, BERHAMPUR-760001, ODISHA

SYLLABUS
U.G. (Botany)

2017

P.G.DEPARTMENT OF BOTANY

KHALLIKOTE AUTONOMOUS COLLEGE,

BERHAMPUR-760001, ODISHA

COURSE STRUCUTRE FOR UG SCIENCE UNDER CBCS

SEM	Core	AECC(2)	AECC(2)	DSE(4)	GE(4)	Credits	Marks
	course	Compulsory	Skill				
	(14)		Based				
	Α	В	С	D	E		
IS	CORE-1	MIL			GE-1	20	350
	CORE-2	(O/H/T/E)			Minor-1		
II S	CORE-3	EVS			GE-2	20	350
	CORE-4				Minor-2		
III S	CORE-5		SEC-I		GE-3	26	450
	CORE-6		Communic		Minor-1		
	CORE-7		ative				
			English				
			and				
			writing				
			Skill				
			(Comp.)				
IV S	CORE-8		SEC-II		GE-4	26	450
	CORE-9		Subject		Minor-2		
	CORE-10		Specific				
			Skill				
VS	CORE-11			DSE-1		24	400
	CORE-12			DSE-2			
VIS	CORE-13			DSE-3		24	400
	CORE-14			DSE-4			
TOT	84Credits/	04 credits	04 credits	24 credits	24credits	140	2400
AL	1400 marks	100 marks	100marks	400marks	400marks		

FOR SCIENCE COURSES

- A. Core course =Hons 14 papers 100x14 =1400 marks (56 credits)
- **B.** AECC (Ability Enhancement Compulsory Course)= MIL (O/H/T/E) AND EVS
- **C. SEC-1**: to be taught by English Department and **SEC-II** will be Adv.Biotech/Adv.Chem/Applied Phys/ Modern Math and not same as Core subject. Syllabus for SEC-II is to be prepared by Deptt./BOS for 50marks(40+10 marks) with four units, Exams. Will be for 2 hours duration.
- D. DSE 1 to 4: Spl. Hons, Papers to be selected from syllabus given by Utkal Univ. DSE-4 can be Research methodology/Theory/Practical/projects/field tour as decided by Deptt./BOS
- **E. GE-1 to 4** (two subjects, Minor-1&Minor-2)

Choose any two from Bot /Chem /Phys/Math/Zool. Expect Core Subject

Try to change the title of the course by keeping course content same .

Practicals in SemesterI, II, V and VI can be combined into one practical of 50 marks and 6 hr duration. For Semester III and IV, there can be one practical of 75 marks and 6hr duration.

DETAILED COURSE STRUCTURE FOR SCIENCE (BOTANY) underCBCS, 2017-18

SEMESTER	COURSE OPTED	COURSE NAME	CREDIT	1
	Ability	MIL	02	50
	Enhancement	(O/H/T/E)		
	Course-I			
	CORE-1	Microbiology and phycology	04	75
	Theory	3, 1, 2,		
FIRST	CORE-2	Biomolecules and Cell Biology	04	75
SEMESTER	Theory	57		
	PRACTICAL FOR	Microbiology and phycology	04	50
	CORE -1 AND CORE-	Biomolecules and Cell Biology		
	2	5,		
	Generic Elective-I	Molecular Biology and	04+02	75+25
	Theory	Biodiversity of life		70 20
	Practical			
FIRST SEMES	STER	TOTAL 20 c	redits	350 marks
	Ability	EVS	04	100
	Enhancement			
	Course-II			
	CORE-3	Mycology & Phytopathology	04	75
	Theory			
SECOND	CORE-4	Archegoniate	04	75
SEMESTER	Theory			
	PRACTICAL FOR	Mycology & Phytopathology	04	50
	CORE -3 AND CORE-	Archegoniate		
	4			
	Generic Elective-II	Diversities in Land Plants	04+02	75+25
	Theory			
	Practical			
SECOND SEN	MESTER	TOTAL 22 o	redits	400 marks
	CORE-5	Anatomy of angiosperm	04	75
	Theory			
	CORE-6	Economic Botany	04	75
	Theory			
	0005 7			
ı	CORE-7	Genetics	04	75
ı	Theory			
THIRD	PRACTICAL FOR		06	75
SEMESTER	CORE -5, CORE-6			
	AND CORE-7			
			_	
	SEC-I	Communicative English & writing Skill	04	100
		writing Skill	04	75+25
	SEC-I Generic Elective-III	writing Skill Plant and human Welfare, Basic		
	SEC-I	writing Skill		

IMPORTANT NOTE: About practical examinations

First semester: ONE Practical for CORE-1 and CORE-2 =50 marks (6 hr)

Second semester: ONE Practical for CORE-3 and CORE-4 =50 marks (6 hr)

Third semester: ONE Practical for CORE-5, CORE-6 and CORE-7 =75 marks (6 hr)

Fourth semester:ONE Practical for CORE-8, CORE_9 and CORE-10 =75 marks (6 hr)

Fifth semester: ONE Practical for CORE-11 and CORE-12 = 50 marks (6 hr)Sixth Semester: ONE Practical for CORE-13 and CORE-14 = 50 marks (6 hr)

SEMESTER	COURSE OPTED	COURSE NAME	CREDITS	MARKS
	CORE-8	Molecular Biology	04	75
	Theory			
	CORE-9	Ecology	04	75
	Theory			
	CORE-10	Plant Systematics	04	75
FOURTH	Theory			
SEMESTER	PRACTICAL FOR		06	75
	CORE -8, CORE-9			
	AND CORE-10			
	SEC-II	Applied Biotechnology	04	100
	Generic Elective-IV	Zoology - 02	04+02	75
	Theory			
	Practical			
FOURTH S	SEMESTER	TOTAL 26c	redits 45	0 marks
	CORE-11	Reproductive Biology of	04	75
	Theory	Angiosperms		
	CORE-12	Plant Physiology	04	75
FIFTH	Theory			
SEMESTER	PRACTICAL FOR		04	50

	CORE -11 AND			
	CORE-12			
	DSE-1	Natural resource	06	100
	Theory	management		
	Practical			
	DSE-2	Biostatistics	06	100
	Theory			
	Practical			
	PRACTICAL FOR DSE			
	-1 AND DSE-2			
FIFTH	SEMESTER	TOTAL 24cm	edits 40	0 marks
	CORE-13	Plant Metabolism	04	75
	Theory			
	Practical			
SIXTH	CORE-14	Plant Biotechnology	04	75
SEMESTER	Theory			
	Practical			
	PRACTICAL FOR		04	50
	CORE -13 AND			
	CORE-14			
	DSE-3	Stress Biology	06	100
	Theory			
	Practical			
	DSE-4		06	100
	:PROJECTS			
	SIXTH SEMES	TER TOTAL	2	4 credits 400
marks				

THEORY-75 marks (60 Term End+15 Internal Assessment)

THEORY-50 marks (40 Term End+10 Internal Assessment)

SEMESTER-I BOTANY CORE

Core Course I: Microbiology and Phycology 100 marks (Credits-6: Theory-4, Practical-2)

THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

UNIT –I	Introduction to microbial world	7 lectures
	Viruses:-Discovery, classification (Baltimore), general structure with special	
	reference to viroids and prions; replication (general account), DNA virus (T-phage), lytic and lysogenic cycle; RNA virus (TMV). Economic importance	
	of viruses	
	Bacteria: - Discovery, general characteristics, types-archaebacteria, eubacteria, wall-less forms (mycoplasma and spheroplasts), cell structure, nutritional types, reproduction-vegetative, asexual and recombination (conjugation, transformation and transduction). Economic importance of bacteria	5 lectures
UNIT-II	Algae:- General characteristics; range of thallus organization; Cell structure and components; cell wall, pigment system, reserve food (of only groups represented in the syllabus), flagella; and methods of reproduction, classification; criteria, system of Fritsch, and evolutionary classification of Lee (only upto groups); significant contributions of important phycologists (F.E. Fritsch, G.M. Smith, T.V. Desikachary, M.O.P. Iyengar). Economic importance of algae.	6 lectures
UNIT- III	Cyanophyta:- Ecology and occurrence, range of thallus organization, cell	5 lectures
	structure, heterocyst, reproduction. Morphology and life-cycle of <i>Nostoc</i>	
	Chlorophyta:- General characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycles of	5 lectures
	Chlamydomonas, Volvox, Oedogonium, Coleochaete.	
UNIT -IV	Charophyta:- General characteristics; occurrence, morphology, cell structure and life-cycle of <i>Chara</i> .	2 lectures
	Xanthophyta:- General characteristics; range of thallus organization;	3 lectures
	Occurrence, morphology and life-cycle of Vaucheria	
	Phaeophyta:- Characteristics, occurrence, range of thallus organization, cell structure and reproduction. Morphology and life-cycle of <i>Fucus</i>	3 lectures
	Rhodophyta:- General characteristics, occurrence, range of thallus	4 lectures
	organization, cell structure and reproduction. Morphology and life-cycle of <i>Polysiphonia</i> .	

PRACTICAL (20 CLASSES 2 HOURS EACH)

MICROBIOLOGY	1. Electron micrographs/Models of viruses - T-Phage and TMV, Line		
	drawings/Photographs of Lytic and Lysogenic Cycle.		
	2. Types of Bacteria to be observed from temporary/permanent		
	slides/photographs.		
	Electron micrographs of bacteria, binary fission, endospore, conjugation,		
	root Nodule.		
	3. Gram staining.		
	4.Endospore staining (endospores taken from soil bacteria)		
PHYCOLOGY	Study of vegetative and reproductive structures of Nostoc,		
	Chlamydomonas ,Volvox, Oedogonium,Coleochaete, Chara, Vaucheria,		
	Ectocarpus, Fucus and Polysiphonia, temporary preparations and		
	permanent slides.		

Suggested Readings

- 1. Lee, R.E. (2008). Phycology, Cambridge University Press, Cambridge. 4th edition.
- 2. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition.
- 3. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West Press, Delhi.
- 4. Sahoo, D. (2000). Farming the ocean: seaweeds cultivation and utilization. Aravali International, NewDelhi.
- 5. Campbell, N.A., Reece J.B., Urry L.A., Cain M.L., Wasserman S.A. Minorsky P.V., Jackson R.B.(2008). Biology, Pearson Benjamin Cummings, USA. 8th edition.
- 6. Pelczar, M.J. (2001) Microbiology, 5th edition, Tata McGraw-Hill Co, New Delhi

SEMESTER-I

BOTANY CORE

<u>Core Course II:</u> Biomolecules and Cell Biology-100 marks(Credits-6:Theory-4,Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes

UNIT -I		2
UNII -I	Biomolecules:- Types and significance of chemical bonds; Structure and	lectures
	properties of water; pH and buffers.	
	Carbohydrates: Nomenclature and classification; Role of monosaccharides (glucose, fructose, sugar alcohols - mannitol and sorbitol); Disaccharides (sucrose, maltose, lactose), Oligosaccharides and polysaccharides (structural-cellulose, hemicelluloses, pectin, chitin, mucilage; storage -starch, insulin)	3 lectures
	Lipids: Definition and major classes of storage and structural lipids. Storage lipids. Fatty acids structure and functions. Essential fatty acids. Triacylglycerols structure, functions and properties	3 lectures
	Proteins: Structure of amino acids; Peptide bonds; Levels of protein structure-primary, secondary, tertiary and quarternary; Isoelectric point; Protein denaturation and biological roles of proteins	3 lectures
	Nucleic acids: Structure of nitrogenous bases; Structure and function of nucleotides; Types of nucleic acids; Structure of A, B, Z types of DNA; Types of RNA; Structure of tRNA	lectures
UNIT-II	Bioenergenetics: Laws of thermodynamics, concept of free energy, endergonic and exergonic reactions, coupled reactions, redox reactions.ATP: structure, its role as a energy currency molecule.	3 lectures
	Enzymes: Structure of enzyme: holoenzyme, apoenzyme, cofactors, coenzymes and prosthetic group; Classification of enzymes; Features of active site, substrate specificity, mechanism of action (activation energy, lock and key hypothesis, induced - fit theroy), Michaelis - Menten equation, enzyme inhibition and factors affecting enzyme activity.	4 lectures
UNIT- III	Cell and Cell organelle: Cell as a unit of structure and function; Characteristics of prokaryotic and eukaryotic cells; Origin of eukaryotic cell (Endosymbiotic theory).	2 lectures
	Cell wall and plasma membrane: Chemistry, structure and function of Plant Cell Wall. Overview of membrane function; fluid mosaic model; Chemical composition of membranes; Membrane transport - Passive, active and facilitated transport, endo cytosis and exocyosis.	3lectures
	Cytoskeleton: Role and structure of microtubules, microfilaments and intermediary filament Chloroplast, mitochondria and peroxisomes: Structural organization;	4 lectures
	Function; Semiautonomous nature of mitochondria and chloroplast.	
	Endoplasmic Reticulum, Golgi Apparatus, Lysosomes	2 lectures
UNIT - IV	Nucleus; Structure-nuclear envelope, nuclear pore complex, nuclear lamina, molecular organization of chromatin; nucleolus. Cell division: Eukaryotic cell cycle, different stages of mitosis and meiosis. Regulation of cell cycle.	7 lectures

PRACTICALS(20 CLASES OF 2 hours duration)

PRACTICALS	1.Qualitative tests for carbohydrates, reducing sugars, non-reducing
	sugars, lipids and proteins
	2.Study of plant cell structure with the help of epidermal peel mount o
	Onion/Rhoeo/Crinum.f
	3.Demonstration of the phenomenon of protoplasmic streaming in <i>Hydrilla</i>
	leaf.
	4.Measurement of cell size by the technique of micrometry.
	5.Counting the cells per unit volume with the help of haemocytometer.
	(Yeast/pollen grains)
	6.Study of cell and its organelles with the help of electron micrographs.
	7.Study the phenomenon of plasmolysis and deplasmolysis.
	8.Study different stages of mitosis and meiosis using aceto carmine and
	aceto orcine methods

Suggested Readings

- 1. Campbell, MK (2012) Biochemistry, 7th ed., Published by Cengage Learning
- 2. Campbell, PN and Smith AD (2011) Biochemistry Illustrated, 4th ed., Published by Churchill Livingstone.
- 3. Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman
- 4. Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company
- 5. Nelson DL and Cox MM (2008) Lehninger Principles of Biochemistry, 5th Edition., W.H. Freemanand Company.
- 6. Karp, G. (2010). Cell Biology, John Wiley & Sons, U.S.A. 6th edition.
- 7. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc.U.S.A. 8th edition.
- 8. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. ASM Press &Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 9. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009 The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Fra

SEMESTER-II

BOTANY CORE

<u>Core Course III</u>: Mycology and Phytopathology – 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction to true fungi: Definition, General characteristics; 5 lectures Affinities with plants and animals; Thallus organization; Cellwall composition; Nutrition; Classification. Chytridiomycetes: General account Zygomycota: General characteristics; Ecology; Thallus organisation; 2 lectures Life cycle with reference to <i>Rhizopus</i> . Ascomycota: General characteristics (asexual and sexual fruiting 7 lectures
	bodies); Ecology; Life cycle, Heterokaryosis and parasexuality; life cycle and classification with reference to <i>Aspergillus</i> , <i>Penicillium</i> , <i>Alternaria</i> and <i>Neurospora</i> ,.
Unit-II	Basidiomycota: General characteristics; Ecology; Life cycle and Classification with reference to black stem rust on wheat <i>Puccinia</i> (Physiological Specialization), loose and covered smut (symptoms only), <i>Agaricus</i> ;
	Oomycota: General characteristic; Ecology; Life cycle and classification with reference to <i>Phytophthora</i> .
Unit-III	Symbiotic associations: Lichen - General characteristics; range of thallus organization; Types of Lichen Nature of associations of algal and fungal partners; Reproduction. Mycorrhiza-Ectomycorrhiza, Endomycorrhiza and their significance.
	Applied Mycology: Role of fungi in biotechnology, Application of fungi in food industry (Baking, Organic acids, Enzymes, Mycoproteins); Secondary metabolites (Pharmaceutical preparations); Agriculture (Biofertilizers).
Unit-IV	Phytopathology: Terms and concepts; General symptoms; etiology; 7 lectures symptomology; Host- Pathogen interaction; disease cycle and environmental relation; prevention and control of plant diseases, and role of quarantine. Bacterial diseases - Citrus canker and angular leaf spot disease of Cotton. Viral diseases - Tobacco Mosaic disease, Vein clearing. Fungal diseases - Black stem rust of wheat, white rust of crucifers

PRACTICALS (20 CLASSES OF 2HOURS)

PRACTICALS

- 1. Introduction to the world of fungi (Unicellular, coenocytic/septate mycelium, asocarps &basidiocarps).
- 2. *Rhizopus:* study of asexual stage from temporary mounts and sexual structures through permanent slides.
- 3. Aspergillus and Penicillium: study of asexual stage from temporary mounts. Study of Sexual stage from permanent slides/photographs
- 4. Alternaria: Specimens/photographs and temporary mounts.
- 5. *Puccinia:* Herbarium specimens of Black Stem Rust of Wheat and infected Barberryleaves; sections/ mounts of spores on wheat and permanent slides of both the hosts.
- 6. Agaricus: Specimens of button stage and full grown mushroom; sectioning of gills of Agaricus, fairy rings and bioluminescent mushrooms to be shown.
- 7. Albugo: Study of symptoms of plants infected with Albugo; asexual phase study through section/ temporary mounts and sexual structures through permanent slides.
- 8. Lichens: Study of growth forms of lichens (crustose, foliose and fruticose) on different substrates. Study of thallus and reproductive structures (soredia and apothecium) through permanent slides. Mycorrhizae: ectomycorrhiza and endo mycorrhiza (Photographs)

Suggested Readings

- 1. Agrios, G.N. 1997 Plant Pathology, 4th edition, Academic Press, U.K.
- 2. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley & Sons(Asia) Singapore. 4th edition.
- 3. Webster, J. and Weber, R. (2007). Introduction to Fungi, Cambridge University Press, Cambridge. 3rdedition.
- 4. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi and Their Allies, Macmillan Publishers IndiaLtd.
- 5. Sharma, P.D. (2011). Plant Pathology, Rastogi Publication, Meerut, Indi

SEMESTER-II

BOTANY CORE

Core Course IV: Archegoniate - 100 marks (Credits-6 Theory-4, Practical 2)

THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory +20 Practical classes]

Introduction: Unifying features of archegoniates; Transition to land 2 lectures	5
habit; Alternation of generations. Types of life cycles, Sporophytic	
generation, gametophytic generation.	
Bryophytes: General characteristics; Adaptations to land habit; 12 lecture	es
Classification; Range of thallus organization. Classification (up to	
family).Riccia, Marchantia, Pellia, Porella, Anthoceros, Sphagnum and	
Funaria; Reproduction and evolutionary trends in Riccia, Marchantia,	
Anthoceros and Funaria (developmental stages not included).	
Ecological and economic importance of bryophytes.	
Pteridophytes: General characteristics, classification. Classification 10 lecture	es
(up to family), morphology, anatomy and reproduction of Psilotum,	
Selaginella, Equisetum and Pteris.(Developmental details not to be	
included). Apogamy, and apospory, heterospory and seed habit, telome	
theory, stelar evolution. Ecological and economic importance.	
Gymnosperms: General characteristics, classification (up to family), 8 lectures	s)
morphology, anatomy and reproduction of Cycas, Pinus, Ginkgo and	
Gnetum. (Developmental details not to be included). Ecological and	
economic importance.	
Fossils: Geographical time scale, fossils and fossilization process. 8 lectures	6
Morphology, anatomy and affinities of Rhynia, Calamites,	
Lepidodendron, Lyginopteris and Cycadeoidea.	
	habit; Alternation of generations. Types of life cycles, Sporophytic generation, gametophytic generation. Bryophytes: General characteristics; Adaptations to land habit; Classification; Range of thallus organization. Classification (up to family). Riccia, Marchantia, Pellia, Porella, Anthoceros, Sphagnum and Funaria; Reproduction and evolutionary trends in Riccia, Marchantia, Anthoceros and Funaria (developmental stages not included). Ecological and economic importance of bryophytes. Pteridophytes: General characteristics, classification. Classification (up to family), morphology, anatomy and reproduction of Psilotum, Selaginella, Equisetum and Pteris. (Developmental details not to be included). Apogamy, and apospory, heterospory andseed habit, telome theory, stelar evolution. Ecological and economic importance. Gymnosperms: General characteristics, classification (up to family), morphology, anatomy and reproduction of Cycas, Pinus, Ginkgo and Gnetum. (Developmental details not to be included). Ecological and economic importance. Fossils: Geographical time scale, fossils and fossilization process. 8 lectures Morphology, anatomy and affinities of Rhynia, Calamites,

PRACTICAL

Riccia - Morphology of thallus.

Marchantia- Morphology of thallus, whole mount of Gemmae (all temporary slides), longitudinal section of Sporophyte (all permanent slides).

Anthoceros- Morphology of thallus, dissection of sporophyte (temporary slide), vertical section of thallus (permanent slide).

Pellia, Porella- Permanent slides.

Sphagnum- Morphology of plant, whole mount of leaf (permanent slide only).

Funaria- Morphology, rhizoids, operculum, peristome, annulus, spores (temporary slides); permanent slides showing antheridial and archegonial heads, and protonema.

.Psilotum- Study of specimen, transverse section of synangium (permanent slide). *Selaginella-* Morphology, whole mount of leaf with ligule, transverse section of stem, longitudinal section of strobilus (permanent slide .

Equisetum- Morphology, transverse section of internode, transverse section of strobilus, whole mount of sporangiophore, whole mount of spores (wet and dry) (temporary slide), transverse section of rhizome (permanent slides)

Pteris- Morphology, transverse section of rachis, transverse section of rhizome, whole mount of prothallus with sex organs and young sporophyte (permanent slide).

Cycas- Morphology (coralloid roots, bulbil, leaf), transverse section of coralloid root, transverse section of rachis, longitudinal section of ovule, transverse section of root (permanent slide).

Pinus- Morphology (long and dwarf shoots, whole mount of dwarf shoot, male and female cones), transverse section of Needle, transverse section of stemlongitudinal section of female cone, tangential longitudinal section & radial longitudinal sections stem (permanent slide).

Gnetum- Morphology (stem, male & female cones), transverse section of stem, vertical section of ovule (permanent slide)

Suggested Readings

- 1. Vashistha, P.C., Sinha, A.K., Kumar, A. (2010). Pteridophyta. S. Chand. Delhi, India.
- 2. Bhatnagar, S.P. & Moitra, A. (1996). Gymnosperms. New Age International (P) Ltd Publishers, NewDelhi, India.
- 3. Parihar, N.S. (1991). An introduction to Embryophyta: Vol. I. Bryophyta. Central Book Depot. Allahabad.
- 4. Raven, P.H., Johnson, G.B., Losos, J.B., Singer, S.R. (2005). Biology. Tata McGraw Hill, Delhi.
- 5. Vander-Poorteri 2009 Introduction to Bryophytes. COP.

SEMESTER-III

BOTANY CORE

<u>Core Course V:</u> Anatomy of Angiosperms - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction and scope of Plant Anatomy: Applications in systematics,	2 lectures
	forensics and pharmacognosy.	
	Tissues: Classification of tissues; Simple and complex tissues (no	8 Lectures
	phylogeny); cytodifferentiation of tracheary elements and sieve	
	elements;Pits and plasmodesmata.	
	Secretory System: Hydathodes, cavities, lithocysts and laticifers.	
Unit-II	Stem: Organization of shoot apex (Apical cell theory, Histogen theory,	5 Lectures
	Tunica Corpus theory); Types of vascular bundles; Structure of dicot and	
	monocot stem.	
	Leaf: Structure of dicot and monocot leaf, Kranz anatomy.	4 lectures
	Root: Organization of root apex (Apical cell theory, Histogen theory,	4 Lectures
	Korper-Kappe theory); Quiescentcentre; Root cap; Structure of dicot and	
	monocot root; Endodermis, exodermis and origin oflateral root.	
Unit-III	Vascular Cambium: Structure, function and seasonal activity of	4 Lectures
	cambium; Secondary growth in root and stem.	
	Wood: Axially and radially oriented elements; Types of rays and axial	5 Lectures
	parenchyma; Sapwood and heartwood; Ring and diffuse porous	
	wood; Early and late wood, tyloses; Dendrochronology.	
	Periderm: Development and composition of periderm, rhytidome and	3 Lectures
	lenticels.	
Unit -IV	Adaptive and Protective Systems Epidermal tissue system, cuticle,	5 Lectures
	epicuticular waxes, trichomes(uni-and multicellular, glandular and	
	nonglandular, two examples of each), stomata (classification);Anatomical	
	adaptations of xerophytes and hydrophytes.	

PRACTICALS (20CLASSES OF 2 HOURS duration)

PRACTICALS

- 1. Study of anatomical details through permanent slides/temporary stainmounts/macerations/ museum specimens with the help of suitable examples.
- 2. Apical meristem of root, shoot and vascular cambium.
- 3. Distribution and types of parenchyma, collenchyma and sclerenchyma.
- 4. Xylem: Tracheary elements-tracheids, vessel elements; thickenings; perforation plates; xylem fibres.
- 5. Wood: ring porous; diffuse porous; tyloses; heart- and sapwood.
- 6. Phloem: Sieve tubes-sieve plates; companion cells; phloem fibres.
- 7. Epidermal system: cell types, stomata types; trichomes: non-glandular and glandular.
- 8. Root: monocot, dicot, secondary growth.
- 9. Stem: monocot, dicot primary and secondary growth; periderm; lenticels.
- 10.Leaf: isobilateral, dorsiventral, C4 leaves (Kranz anatomy).
- 11. Adaptive Anatomy: xerophytes, hydrophytes.
- 12. Secretory tissues: cavities, lithocysts and laticifers.

Suggested Readings:

- 1. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA
- 4. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.

11 <u>SEMESTER-III</u> <u>BOTANY CORE</u>

<u>Core Course VI</u>: Economic Botany - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Origin of Cultivated Plants: Concept of Centres of Origin, their	3 lectures
	importance with reference to Vavilov's work. Examples of major plant	
	introductions; Crop domestication and loss of genetic diversity;	
	evolution of new crops/varieties, importance of germplasm diversty.	
	Cereals: Wheat and Rice (origin, morphology, processing & uses),	3 lectures
	brief account of millets.	
	Legumes: General account, importance to man and	3 lectures
	ecosystem.	
	Sugars & Starches: Morphology and processing of sugarcane,	3 lectures
	products and by-products of sugarcane industry. Potato - morphology,	
	propagation & uses.	
Unit-II	Spices: Listing of important spices, their family and part used,	4 lectures
	economic importance with specialreference to fennel, saffron, clove and	
	black pepper	
	Beverages: Tea, Coffee (morphology, processing	4 lectures
	&uses)	
	Drug-yielding plants: Therapeutic and habit-forming drugs with	4 lectures
	specialreference to Cinchona, Digitalis, Papaver and Cannabis.	
	Tobacco: Tobacco (Morphology, processing, uses and health hazards)	2 lectures
Unit-III	Oils & Fats: General description, classification, extraction, their uses	4 lectures
	and health implications groundnut, coconut, linseed and Brassica and	
	Coconut (Botanical name, family & uses)	
	Essential Oils: General account, extraction methods, comparison with	4 lectures
	fatty oils & their uses.	
Unit-IV	Natural Rubber: Para-rubber: tapping, processing and	2 lectures
	uses.	
	Timber plants: General account with special reference to teak and	2 Lectures
	pine.	
	Fibres: Classification based on the origin of fibres, Cotton and Jute	2 lectures
	(morphology, extraction and uses).	

12 <u>BOTANY CORE</u>

PRACTICALS (20 CLASSES OF 2 HOURS DURATION)

PRACTICALS

- **1. Cereals:** Rice (habit sketch, study of paddy and grain, starch grains, micro-chemical tests).
- **2. Legumes:** Soya bean, Groundnut, (habit, fruit, seed structure, microchemical tests).
- **3. Sugars & Starches:** Sugarcane (habit sketch; cane juice- microchemical tests),

Potato(habit sketch, tuber morphology, T.S. tuber to show localization of starch grains, w.m. starch grains, micro-chemical tests).

- **4. Spices:** Black pepper, Fennel and Clove (habit and sections).
- **5. Beverages:** Tea (plant specimen, tea leaves), Coffee (plant specimen, beans).
- **6. Oils & Fats:** Coconut- T.S. nut, Mustard-plant specimen, seeds; tests for fats incrushedseeds.
- **7. Essential oil-yielding plants:** Habit sketch of *Rosa*, Vetiveria, Santalum and Eucalyptus (specimens/photographs).
- **8. Rubber:** specimen, photograph/model of tapping, samples of rubber products.
- **9. Drug-yielding plants:** Specimens of *Digitalis, PapaverandCannabis*.
- **10.Tobacco:** specimen and products of Tobacco.
- **11.Woods:** Tectona, Pinus: Specimen, Section of young stem.
- **12. Fibre-yielding plants:** Cotton (specimen, whole mount of seed to show lint andfuzz; whole mount of fibre and test for cellulose), Jute (specimen, transverse section of stem, test for lignin on transverse section of stem and fibre).

Suggested Readings

- 1. Kochhar, S.L. (2012). Economic Botany in Tropics, MacMillan & Co. New Delhi, India.
- 2. Wickens, G.E. (2001). Economic Botany: Principles & Practices. Kluwer Academic Publishers, The Netherlands.
- 3. Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones & Bartlett Publisher

13 <u>SEMESTER-III</u> <u>BOTANY CORE</u>

Core Course VII: Genetics - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Mendelian genetics and its extension Mendelism: History; Principles of 10 lectures
	inheritance; Chromosome theory of inheritance; Autosomes and sex
	chromosomes; Probability and pedigree analysis; Incomplete dominance
	and codominance; Multiple alleles, Lethal alleles, Epistasis, Pleiotropy,
	Recessive and Dominant traits, Penetrance and Expressivity, Numericals;
	Polygenic inheritance.
Unit-II	Extrachromosomal Inheritance: Chloroplast mutation: Variegation in 6 lectures
	Four o'clock plant; Mitochondrial mutations in yeast; Maternal effects-
	shell coiling in snail; Infective heredity- Kappa particles in <i>Paramecium</i> .
Unit-III	Linkage, crossing over and chromosome mapping: Linkage and 12 lectures
	crossing over, cytological basis of crossing over; Types of crossing over,
	recombination frequency, two factor and three factor crosses; Interference
	and coincidence; Numericals based on gene mapping; Sex Linkage.
	Variation in chromosome number and structure: Deletion,
	Duplication, Inversion, Translocation, Euploidy and Aneuploidy
Unit-IV	Fine structure of gene: Classical vs molecular concepts of gene; Cis-12lectures
Omt-1 v	
	Trans complementation test for functional allelism; Structure of Phage
	T4, rII Locus.
	Gene mutations: Types of mutations; Molecular basis of Mutations;
	Mutagens - physical and chemical (Base analogs, deaminating, alkylating
	and intercalating agents); Detection of mutations: CIB method. Role of
	Transposons in mutation.DNA repair mechanisms.

PRACTICALS (20 CLASSES OF 2 HOURS DURATION)

PRACTICALS	1. Meiosis through temporary squash preparation.
	2. Mendel's laws through seed ratios. Laboratory exercises in probability and chi-
	square analysis.
	3. Chromosome mapping using test cross data.
	4. Pedigree analysis for dominant and recessive autosomal and sex linked traits
	with floral chart.
	5. Incomplete dominance and gene interaction through seed ratios (9:7, 9:6:1,
	13:3, 15:1,
	12:3:1, 9:3:4).
	6. Blood Typing: ABO groups & Rh factor.

Suggested Readings:-

- 1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India.8th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics, John Wiley & Sons Inc., India. 5thedition.
- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.
- 4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W.H. Freeman and Co., U.S.A. 10th edition.

15 <u>SEMESTER-IV</u> <u>BOTANY CORE</u>

Core Course VIII: Molecular Biology - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

UNIT-I	Nucleic acids: Carriers of genetic information: Historical perspective; DNA as the carrier of genetic information (Griffith's, Hershey & Chase, Avery, McLeod & McCarty, Fraenkel-Conrat's experiment.	4 lectures
UNIT-II	The Structures of DNA and RNA / Genetic Material: DNA Structure: Miescher to Watson and Crick- historic perspective, DNA structure, Salient features of double helix, .RNA Structure- Organelle DNA -mitochondria and chloroplast DNA.The Nucleosome - Chromatin structure-Euchromatin, Heterochromatin.	8 lectures
	The replication of DNA: Chemistry of DNA synthesis (Kornberg's discovery); General principles - bidirectional, semi-conservative and semi discontinuous replication, RNA priming; Various models of DNA replication, including rolling circle, θ (theta) mode of replication, replication of linear ds-DNA, Enzymes involved in DNA replication.	6 lectures
UNIT-III	Central dogma and genetic code: Key experiments establishing-The Central Dogma (Adaptor hypothesis and discovery of m RNA	2 lectures
	template), Genetic code (deciphering & salient features) Mechanism of Transcription: Transcription in prokaryotes; Transcription in eukaryotes.	4 lectures
	Split genes-concept of introns and exons, RNA splicing and spliceosome machinery, splicing pathways, group I & group II intron splicing, alternative splicing eukaryotic mRNA processing(5' cap, 3' polyA tail); Ribozymes, exon shuffling.	5 lectures
UNIT-IV	Translation (Prokaryotes and eukaryotes): Ribosome structure and assembly, mRNA; Charging of tRNA, aminoacyl tRNA synthetases; Various steps in protein synthesis, proteins involved in initiation, elongation and termination of polypeptides.	6 lectures
	Regulation of transcription in prokaryotes and eukaryotes: Principles of transcriptional regulation; Prokaryotes: Regulation of lacoperon and trp-operon	5 lectures

16 <u>BOTANY CORE</u>

PRACTICALS (20 CLASSES OF 2 HOURS EACH)

experiments)

PRACTICALS Preparation of LB medium and raising *E.Coli*. RNA estimation by orcinol method. DNA estimation by diphenylamine reagent/UV Spectrophotometry. Study of DNA replication mechanisms through photographs (Rolling circle, Theta replication and semi-discontinuous replication). Study of structures of prokaryotic RNA polymerase and eukaryotic RNA polymerase II through photographs. Photographs establishing nucleic acid as genetic material (Messelson and Stahl's, Avery et al, Griffith's, Hershey & Chase's and Fraenkel & Conrat's

8.Study of the following through photographs: Assembly of Spliceosome machinery; Splicing mechanism in group I & group II introns; Ribozyme and Alternative splicing.

Suggested Readings

- 1. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th

edition.

- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings.U.S.A. 9th edition.
- 4. Russell, P. J. (2010). iGenetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 5. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W.H. Freeman and Co., U.S.A. 10th edition

17 <u>SEMESTER-IV</u> <u>BOTANY CORE</u>

Core Course IX: Plant Ecology and Phytogeography - 100 marks (Credits-6: Theory-4, Practical-2) Theory (each class 1 hour) PRACTICAL (Each class 2 hours)

[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction Concept of ecology, Autoecology, Synecology, system	5 lectures
	ecology, Levels of organization. Inter-relationships between the living	
	world and the environment, the components of environmental, concept	
	of hydrosphere and lithosphere and dynamism, homeostasis.	
	Soil: Importance; Composition; Physical; Chemical and Biological	2 lectures
	components; Soil profile;	
	Water: Importance: States of water in the environment; Atmospheric	2 lectures
	moisture; Precipitation types (rain, fog, snow, hail, dew); Hydrological	
	Cycle; Water in soil; Water table.	
	Light, temperature, wind and fire: Variations; adaptations of plants	4 lectures
	to their variation.	
Unit-II	Population ecology: Characteristics and Dynamics .Ecological	5 lectures
	Speciation	
	Plant communities: Concept of ecological amplitude; Habitat and	5 lectures
	niche; Characters: analytical and synthetic; Ecotone and edge effect;	
	Dynamics: succession - processes, types; climax concepts.	
Unit-III	Ecosystems: Structure; Processes; Trophic organisation; Food chains	5 lectures
	and Food webs; Ecological pyramids.	
	Functional aspects of ecosystem: Principles and models of energy	5 lectures
	flow; Production and productivity; Ecological efficiencies;	
	Biogeochemical cycles; Cycling of Carbon, Nitrogen and Phosphorus.	
Unit-IV	Phytogeography: Principles; Continental drift; Theory of tolerance;	7 lectures
	Endemism; Brief description of major terrestrial biomes (one each from	
	tropical, temperate & tundra); Phytogeographical division of India;	
	Local Vegetation.	

PRACTICALS

- 1. Determination of pH of various soil and water samples (pH meter,universal indicator/Lovibond comparator and pH paper)
- 2. Analysis for carbonates, chlorides, nitrates, sulphates, organic matter and base deficiency from two soil samples by rapid field tests.
- 3. Comparison of bulk density, porosity and rate of infiltration of water in soils of three habitats.
- 4. Determination of dissolved oxygen of water samples from polluted and unpolluted sources.
- 5(a). Study of morphological adaptations of hydrophytes and xerophytes (four each).
- (b). Study of biotic interactions of the following: Stem parasite (*Cuscuta*), Root parasite(*Orobanche*) Epiphytes, Predation (Insectivorous plants).
- 6.Determination of minimal quadrat size for the study of herbaceous vegetation in the college campus, by species area curve method (species to be listed).
- 7. Quantitative analysis of herbaceous vegetation in the college campus for frequency and comparison with Raunkiaer's frequency distribution law.
- 8.Quantitative analysis of herbaceous vegetation for density and abundance in the college campus.
- 9. Field visit to familiarize students with ecology of different sites.

Suggested Readings

- 1. Odum, E.P. (2005). Fundamentals of ecology. Cengage Learning India Pvt. Ltd., New Delhi. 5thedition.
- 2. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya

Publications, New Delhi, India.

- 3. Sharma, P.D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
- 4. Wilkinson, D.M. (2007). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford University Press. U.S.A.
- 5. Kormondy, E.J. (1996). Concepts of ecology. PHI Learning Pvt. Ltd., Delhi, India. 4th edition.

19 <u>SEMESTER-IV</u> <u>BOTANY CORE</u>

Core Course X: Plant Systematics – 100 marks(Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Plant identification, Classification, Nomenclature; Biosystematics	2 lectures
Identification: Field inventory; Functions of Herbarium; Important herbaria	6 lectures
and botanical gardens of the world and India; Virtual herbarium; E-flora;	
Documentation: Flora, Monographs, Journals; Keys: Single access and	
Multi-access	
Taxonomic hierarchy: Concept of taxa (family, genus, species); Categories	6 lectures
and taxonomic hierarchy; Species concept (taxonomic, biological,	
evolutionary).	
Botanical nomenclature: Principles and rules (ICN); Ranks and names;	6 lectures
Typification, author citation, valid publication, rejection of names, principle	
of priority and its limitations; Names of hybrids	
Systematics- an interdisciplinary science: Evidence from palynology,	6 lectures
cytology, phytochemistry and molecular data.	
Systems of classification: Major contributions of Theophrastus, Bauhin,	6 lectures
Tournefort, Linnaeus, Adanson, de Candolle, Bessey, Hutchinson, Takhtajan	
and Cronquist; Classification systems of Bentham and Hooker (upto series)	
and Engler and Prantl (upto series); Brief reference of Angiosperm	
Phylogeny of Angiosperms: Terms and concepts (primitive and advanced,	8 lectures
homology and analogy, parallelism and convergence, monophyly,	
Paraphyly, polyphyly and clades).origin& evolution of angiosperms;	
coevolutionof angiosperms and animals; methods of illustrating evolutionary	
relationship (phylogenetic tree, cladogram).	
	Identification: Field inventory; Functions of Herbarium; Important herbaria and botanical gardens of the world and India; Virtual herbarium; E-flora; Documentation: Flora, Monographs, Journals; Keys: Single access and Multi-access Taxonomic hierarchy: Concept of taxa (family, genus, species); Categories and taxonomic hierarchy; Species concept (taxonomic, biological, evolutionary). Botanical nomenclature: Principles and rules (ICN); Ranks and names; Typification, author citation, valid publication, rejection of names, principle of priority and its limitations; Names of hybrids Systematics- an interdisciplinary science: Evidence from palynology, cytology, phytochemistry and molecular data. Systems of classification: Major contributions of Theophrastus, Bauhin, Tournefort, Linnaeus, Adanson, de Candolle, Bessey, Hutchinson, Takhtajan and Cronquist; Classification systems of Bentham and Hooker (upto series) and Engler and Prantl (upto series); Brief reference of Angiosperm Phylogeny of Angiosperms: Terms and concepts (primitive and advanced, homology and analogy, parallelism and convergence, monophyly, Paraphyly, polyphyly and clades).origin& evolution of angiosperms; coevolutionof angiosperms and animals; methods of illustrating evolutionary

20 <u>BOTANY CORE</u>

Practical (20 classes, each class of 2h)

Practical

1. Study of vegetative and floral characters of the following families (Description, V.S.

flower, section of ovary, floral diagram/s, floral formula/e and systematic position

according to Bentham & Hooker's system of classification):

Ranunculaceae - Ranunculus, Delphinium

Brassicaceae - Brassica, Alyssum / Iberis

Myrtaceae - Eucalyptus, Callistemon

Umbelliferae - Coriandrum / Anethum / Foeniculum

Asteraceae - Sonchus/Launaea, Vernonia/Ageratum, Eclipta/Tridax

Solanaceae - Solanum nigrum/Withania

Lamiaceae - Salvia/Ocimum

Euphorbiaceae - Euphorbia hirta/E.milii, Jatropha

Liliaceae - Asphodelus/Lilium/Allium

Poaceae - Triticum/Hordeum/Avena

- 2. Field visit (local) Subject to grant of funds from the university.
- 3. Mounting of a properly dried and pressed specimen of any wild plant with herbarium label (to be submitted in the record book)

Suggested Readings

- 1. Singh, G. (2012). *Plant Systematics:* Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition.
- 2. Jeffrey, C. (1982). An Introduction to *Plant Taxonomy*. Cambridge University Press, Cambridge.
- 3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 4. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi.
- 5. Radford, A.E. (1986). Fundamentals of *Plant Systematics*. Harper and Row, New York.

21 SEMESTER-V <u>BOTANY CORE</u>

Core Course XI:Reproductive Biology of Angiosperms-100 marks(Credits-6:Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)

[75 marks(Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Introduction: History (contributions of G.B. Amici, W. Hofmeister, E. Strasburger, S.G. Nawaschin, P. Maheshwari, B.M. Johri, W.A. Jensen, J. Heslop-Harrison) and scope.	2 lectures
	Anther: Anther wall: Structure and functions, microsporogenesis, callose deposition and its significance.	2 lectures
	Pollen biology: Microgametogenesis; Pollen wall structure, MGU (male germ unit) structure, NPC system; Palynology and scope (a brief account); Pollen wall proteins; Pollen viability, storage and germination; Abnormal features: Pseudomonads, polyads, massulae, pollinia.	5 lectures
Unit-II	Ovule: Structure; Types; Special structures endothelium, obturator, aril, caruncle and hypostase; Female gametophyte- megasporogenesis (monosporic, bisporic and tetrasporic) and megagametogenesis (details of <i>Polygonum</i> type); Organization and ultrastructure of mature embryo sac.	
	Endosperm: Types, development, structure and functions.	3 lectures
	Embryo: Six types of embryogeny; General pattern of development of dicot and monocot embryo; Suspensor: structure and functions; Embryo-endosperm relationship; Nutrition of embryo; Unusual features; Embryo development in <i>Paeonia</i> .	6 lectures
Unit-III	Pollination and fertilization: Pollination types and significance; adaptations; structure of stigma and style; path of pollen tube in pistil; double fertilization.	4 lectures
	Self incompatibility: Basic concepts (interspecific, intraspecific, homomorphic, heteromorphic, GSI and SSI); Methods to overcome self-incompatibility: mixed pollination, bud pollination,	7 lectures
Unit-IV	Seed: Structure, importance and dispersal mechanisms	3 lectures
	Polyembryony and apomixes: Introduction; Classification; Causes and applications.	4 lectures
	Germline transformation: Pollen grain and ovules through pollen tube pathway method.	2 lectures

22 BOTANY CORE

Practical (20 classes, each class of 2h)

Practical

- 1. Anther: Wall and its ontogeny; Tapetum (amoeboid and glandular); MMC, spore tetrads, uninucleate, bicelled and dehisced anther stages through slides/micrographs, male germ unit (MGU) through photographs and schematic representation.
- 2. Pollen grains: Fresh and acetolyzed showing ornamentation and aperture, psuedomonads, polyads, pollinia (slides/photographs,fresh material), ultrastructure of pollen wall(micrograph); Pollen viability: Calculation of germination in different media using hanging drop method.
- 3. Ovule: Types-anatropous, orthotropous, amphitropous/campylotropous, circinotropous, unitegmic, bitegmic; Tenuinucellate and crassinucellate; Special structures: Endothelium, obturator, hypostase, caruncle and aril (permanent slides/specimens/photographs).
- 4. Female gametophyte through permanent slides/ photographs: Types, ultrastructure of mature egg apparatus.
- 5. Intra-ovarian pollination; Test tube pollination through photographs.
- 6. Endosperm: Dissections of developing seeds for endosperm with free-nuclear haustoria.
- 7. Embryogenesis: Study of development of dicot embryo through permanent slides; dissection of developing seeds for embryos at various developmental stages; Study of suspensor through electron micrographs.

Suggested Readings:

- 1. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms, Vikas Publishing House. Delhi. 5th edition.
- 2. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 3. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 4. Johri, B.M. 1 (1984). Embryology of Angiosperms, Springer-Verlag, Netherland

Core Course XII: Plant Physiology - 100 marks(Credits-6: Theory-4, Practical-2)
THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours
[75 marks (Mid Sem 15 + End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Plant water relationship: Water Potential and its components, water	6 lectures
	absorption by roots, aquaporins, pathway of water movement, symplast,-	
	and apoplastic pathways, root pressure, guttation. Ascent of sap-	
	cohesion-tension theory. Transpiration and factors affecting	
	transpiration, anti transpirants, mechanism of stomatal movement.	
	Translocation in the phloem: Experimental evidence in support of	5 lectures
	phloem as the site of sugar translocation. Pressure-Flow Model; Phloem	
	loading and unloading; Source-sink relationship.	
Unit-II	Mineral nutrition: Essential and beneficial elements, macro, micro and	5 lectures
	trace nutrients, hydroponics, aeroponics(geoponics), mineral deficiency	
	symptoms, roles of essential elements, chelating agents.	
Unit-III	Nutrient Uptake: Soil as a nutrient reservoir, transport of ions across	5 lectures
	cell membrane, passive absorption, electrochemical gradient, facilitated	
	diffusion, active absorption, role of ATP, carrier systems,proton ATPase	
	pump and ion flux, uniport, co-transport, symport, antiport.	
Unit-IV	Plant growth regulators: Bioassay and physiological roles of Auxin,	10 lectures
	Gibberellins, Cytokinin, Abscisic acid, Ethylene.	
	Physiology of flowering: Photoperiodism, florigen concept,	4 lectures
	vernalization, seed dormancy.	
	Phytochrome: Role of phytochrome in photomorphogenesis,.	5 lectures

Practical (20 classes, each class of 2h)

Practical

- 1. Determination of osmotic potential of plant cell sap by plasmolytic method.
- 2. Determination of water potential of given tissue (potato tuber) by weight method.
- 3. Study of the effect of light on the rate of transpiration in excised twig/leaf.
- 4. Calculation of stomatal index and stomatal frequency from the two surfaces of leaves of a mesophyte and xerophyte.
- 5. To calculate the area of an open stoma and percentage of leaf area open through stomata in a mesophyte and xerophyte (both surfaces).
- 6. To study the phenomenon of seed germination (effect of light).
- 7. To study the induction of amylase activity in germinating barley grains.

Demonstration experiments

- 1. To demonstrate suction due to transpiration.
- 2. Fruit ripening/Rooting from cuttings (Demonstration). Bolting experiment/*Avena* coleptile bioassay (demonstration)

Suggested Readings:

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., Moller, I.M. and Murphy, A (2015). Plant Physiology and Development .Sinauer Associates Inc. USA. 6th edition.
- 3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual Narosa Publishing House, New Delhi.

Core Course XIII: Plant Metabolism - 100 marks (Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours)[75 marks (Mid Sem 15 + End Sem 60)] Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Concept of metabolism: Introduction, anabolic and catabolic pathways,regulation of metabolism, role of regulatory enzymes (allosteric and Isozymes).	
	Carbohydrate metabolism: Synthesis and catabolism of starch.	6 lectures
	Lipid metabolism: Synthesis and breakdown of triglycerides, β -oxidation, glyoxylate cycle, gluconeogenesis and its role in mobilisation of lipids during seed germination, α - oxidation.	
Unit-II	Carbon assimilation: Historical background, photosynthetic pigments, role of photosynthetic pigments (chlorophylls and accessory pigments), antenna molecules and reaction centres, photochemical reactions, photosynthetic electron transport, PSI, PSII, Q cycle, CO ₂ reduction,	
	photorespiration, C4 pathways; Crassulacean acid metabolism; Factors affecting CO ₂ reduction.	
Unit-III	Carbon Oxidation: Glycolysis, fate of pyruvate, regulation of glycolysis, oxidative pentose phosphate pathway, oxidative decarboxylation of pyruvate, NADH shuttle; TCA cycle, mitochondrial electron transport, oxidative phosphorylation, factors affecting respiration.	
	ATP-Synthesis: Mechanism of ATP synthesis, substrate level phosphorylation, chemiosmotic mechanism (oxidative and photophosphorylation), ATP synthase,	
Unit-IV	Nitrogen metabolism: Nitrate assimilation, biological nitrogen fixation (examples of legumes and non-legumes); Physiology and biochemistry of nitrogen fixation; Ammonia assimilation and transamination.	

Practical (20 classes, each class of 2h)

Practical	
	1. Chemical separation of photosynthetic pigments.
	2. Experimental demonstration of Hill's reaction.
	3. To study the effect of light intensity on the rate of photosynthesis.
	4. Effect of carbon dioxide on the rate of photosynthesis.
	5. To compare the rate of respiration in different parts of a plant
	6. To study the activity of lipases in germinating oilseeds and demonstrate
	mobilization of lipids during germination.
	7.Demonstration of fluorescence by isolated chlorophyll pigments.
	8. Demonstration of absorption spectrum of photosynthetic pigments.

Suggested Readings:

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U.S.A.4th edition.
- 2. Taiz, L., Zeiger, E., Moller, I.M. and Murphy, A (2015). Plant Physiology and Development. SinauerAssociates Inc. USA. 6th edition.
- 3. Harborne, J.B. (1973). Phytochemical Methods. John Wiley & Sons. New York.

27 SEMESTER-VI <u>BOTANY CORE</u>

Core Course XIV: Plant Biotechnology - 100 marks(Credits-6: Theory-4, Practical-2) THEORY (Each class 1 hour): PRACTICAL (Each class 2 hours) [75 marks (Mid Sem 15+ End Sem 60)]Lectures: 60 [40 Theory + 20 Practical classes]

Unit-I	Plant Tissue Culture: Historical perspective; Aseptic tissue culture techniques, Composition of media; Nutrient and hormone requirements (role of vitamins and hormones).	3 lectures
	Totipotency; Organogenesis; Embryogenesis (somatic and zygotic); Protoplast isolation, culture and fusion; Tissue culture applications (micropropagation, androgenesis, virus elimination, secondary metabolite production, haploids, triploids and hybrids; Cryopreservation; Germplasm Conservation).	7 lectures
Unit-II	Recombinant DNA technology-I: Restriction Endonucleases (History, Types I-IV, biological role and application); Restriction Mapping (Linear and Circular); Cloning Vectors: Prokaryotic (pUC 18 and pUC19, pBR322, Ti plasmid, BAC); Lambda phage, M13 phagemid, Cosmid, Shuttle vector; Eukaryotic Vectors (YAC) Gene Cloning (Recombinant DNA, Bacterial Transformation and selection of recombinant clones, PCR-mediated gene cloning).	10 lectures
Unit-III	Recombinant DNA technology-II: Gene Construct; construction of genomic and cDNA libraries, screening DNA libraries to obtain geneof interest by genetic selection; complementation, colony hybridization; Probes-oligonucleotide, heterologous, PCR; Methods of gene transfer-Agrobacterium-mediated, Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment; Selection of transgenics-selectable marker and reporter genes (Luciferase, GUS, GFP).	10 lectures
Unit-IV	Applications of Biotechnology: Pest resistant (Bt-cotton); herbicide resistant plants (Round Up Ready soybean); Transgenic crops with improved quality traits (Flavr Savr tomato, Golden rice); Improved horticultural varieties (Moondust carnations); Role of transgenics in bioremediation (Superbug); edible vaccines; Industrial enzymes (Aspergillase, Protease, Lipase); Gentically Engineered Products-Human Growth Hormone; Humulin; Biosafety concerns.	10 lectures

BOTANY CORE

PRACTICALS (20 CLASSES OF 2 HOURS EACH)

PRACTICALS

- 1. (a) Preparation of MS medium.
 - (b) Demonstration of *in vitro* sterilization and inoculation methods using leaf and nodal explants of tobacco, *Datura, Brassica* etc.
- 2.Study of anther, embryo and endosperm culture, micro propagation, somatic Embryogenesis & artificial seeds through photographs.
- 3. Construction of restriction map of circular and linear DNA from the data provided.
- 4. Study of methods of gene transfer through photographs: *Agrobacterium*-mediated, direct gene transfer by electroporation, microinjection, microprojectile bombardment.
- 5. Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savrtomato through photographs.
- 6.Restriction digestion and gel electrophoresis of plasmid DNA.(Demonstration)

SUGGESTED READINGS

- 1. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 3. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications Of recombinant DNA. ASM Press, Washington.
- 4. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms.

Vikas Publication HousePvt. Ltd., New Delhi. 5th edition.

- 5. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics.
- John Wiley and Sons, U.K. 5thedition.
- 6. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.
- 7. Chawla, H.S. (2010). Introduction to Plant Biotechnology.

Oxford & IBH Publishing Co.Pvt Ltd., New Delhi.

7. Singh, B. D. (2010) Biotechnology: Expanding Horizon. Kalyani Publishers. New Delhi

Discipline Specific Elective Courses (DSE)

Semester-V

Discipline Specific Elective (DSE-1): Natural Resource Management – 100 marks (Credits-6:)THEORY (Each class 1 hour): [100 marks (Mid Sem 20+ End Sem 80)]Lectures: 40 Theory

Unit –I	Natural resources: Definition and types. Sustainable	5 lectures
	utilization: Concept, approaches (economic, ecological and	
	socio-cultural).	
Unit –II	Land: Utilization (agricultural, pastoral, horticultural,	5 lectures
	silvicultural); Soil degradation and management.	
	Water: Fresh water (rivers, lakes, groundwater, aquifers,	6 lectures
	watershed);Marine; Estuarine; Wetlands; Threats and	
	management strategies	
Unit –III	Biological Resources: Biodiversity-definition and types;	8 lectures
	Significance; Threats; Management strategies; Bioprospecting;	
	IPR; CBD; National Biodiversity Action Plan).	
	Forests: Definition, Cover and its significance (with special	6 lectures
	reference toIndia); Major and minor forest products;	
	Depletion; Management.	
Unit –IV	Energy: Renewable and non-renewable sources of energy	6 lectures
	Contemporary practices in resource management: EIA,	
	GIS, Participatory Resource Appraisal, Ecological Footprint	
	with emphasis oncarbon footprint.	
	Resource Accounting; Waste management. National and	4 lectures
	international efforts in resource management and conservation	

SEMESTER-V

Discipline Specific Elective (DSE-2): Biostatstics – 100 marks(Credits-6) THEORY (Each class 1 hour): [100 marks (Mid Sem 20 + End Sem 80)]Lectures: 40 Theory

Unit –I	Biostatistics - definition - statistical methods - basic	8 lectures
	principles. Variables -measurements, functions, limitations	
	and uses of statistics.	
Unit –II	Collection of data primary and secondary - types and methods	8 lectures
	of data collection procedures - merits and demerits.	
	Classification - tabulation and presentation of data – sampling	
	methods.	
Unit –III	Measures of central tendency - mean, median, mode,	10 lectures
	geometric mean -merits & demerits. Measures of dispersion -	
	range, standard deviation, mean deviation, quartile deviation -	
	merits and demerits; Co- efficient of variations.	
Unit –IV	Correlation - types and methods of correlation, regression,	8 lectures
	simple regression equation, fitting prediction, similarities and	
	dissimilarities of correlation and regression	
	Statistical inference - hypothesis - simple hypothesis -	6 lectures
	student 't' test - chisquare test.	

SEMESTER-VI

Discipline Specific Elective (DSE - 3):Stress Biology – 100 marks(Credits-6THEORY (Each class 1 hour):[100 marks (Mid Sem 20 + End Sem 80)]Lectures: 40 Theory

Unit –I	Environmental factors: Water stress; Salinity stress, High	12 lectures
	light stress;	
	Temperature stress; Hypersensitive reaction; Pathogenesis—	
	related (PR)proteins; Systemic acquired resistance;	
	Mediation of insect and disease resistance by jasmonates.	
Unit –II	Stress sensing mechanisms in plants: Role of nitric	12 lectures
	oxide. Calcium modulation, Phospholipid signaling	
Unit –III	Developmental and physiological mechanisms that	10 lectures
	protect plants	
	against environmental stress: Adaptation in plants;	
	Changes in root: shoot ratio; Aerenchyna development;	
	Osmotic adjustment; Compatible solute production.	
Unit –IV	Reactive oxygen species - Production and scavenging	6 lectures
	mechanisms. Acclimation and adaptation of plants.	

FIRST SEMESTER: MINOR-1 GE-I (Botany) **Duration of Exam: 3**

F.M 75+25=100(04 +02 credits)

hours

Minor –I Generic Elective-1 (Bio-molecules and Biodiversity in life)

Unit –I	Cell ,Molecular Biology and Genetics	
	Ultra-structure of a typical plant cell and its organelles. cell	Periods :10
	division, types and significance Structure and types of DNA, DNA	
	Replication in Prokaryotes ,Principles of inheritance, Mendel's laws	
	of inheritance, Cytoplasmic inheritance in <i>Mirabillis</i> and Snail.	
	Mutation ,Ploidy (Aneuploidy and euploidy)	
Unit –II	Microbiology, Phycology , Mycology & Pathology	
	Viruses : Structure of TMV and bacteriophage, replication of	Periods :10
	bacteriophages (Lytic and Lysogenic cycle)	
	Bacteria: Structure, nutrition, reproduction, recombination,	
	economic importance,	
	Phycology: Thallus organisation reproduction and economic	
	importance of algae, and life cycle of the following genera:	
	Chlamydomonas, Oedogonium, Chara, Vaucheria, Polysiphnia,	
	Mycology: General characteristics of fungi: life cycle of the	
	following genera: Rhizopus, Penicillium, Puccinia,	
	Pathology : Symptoms, causative organism, and control measures	
	of the following diseases- Damping off of seedlings, Mildew of Pea,	
	Rust of Wheat.(No developmental stages necessary for life cycle)	
Unit –III	Diversities in Land Plants	
	Bryophytes : General features of Bryophytes, morphology, anatomy	Periods :10
	, reproduction and life cycle of <i>Marchantia</i> , <i>Anthoceros</i> ,	
	Sphagnum.	
	Pteridophytes: General features of Pteridophytes, morphology,	
	anatomy, reproduction and life cycle of Selaginella, Equisetum,	
	Marsilea.	
	Gymnosperm : General features of Gymnosperm, morphology,	
	anatomy, reproduction and life cycle of Cycas, Pinus and Gnetum.	
	.(No developmental stages necessary for life cycle)	
Unit –IV	Anatomy and Embryology	
	Tissues: Meristematic and Permanent tissues, Shoot apex	Periods :10
	organization and the theories related to it, Normal and anomalous	
	secondary growth, Microsporogenesis, megasporogenesis,	
	development of male and female gametophyte, Pollination and	
	fertilization, Types of endosperms, development of typical dicot	
	and monocot embryo.	

BOTANY

General elective - I

PRACTICAL (20 CLASSES 2 HOURS EACH)

Microbiology,	1. Electron micrographs/Models of viruses - T-Phage and TMV, Line
Phycology	drawings/Photographs of Lytic and Lysogenic Cycle.
,Mycology&	2. Gram staining.
Pathology	3. Study of vegetative and reproductive structures of <i>Chlamydomonas</i>
	,Oedogonium, Chara, Vaucheria, and Polysiphonia, temporary slide
	preparations.
Cytology	Microgrphic stydy of :- Prokaryotic DNA replication, 3D structure of different types iof
	DNA
Diversities in Land	Permanent slides of Bryophytes,Pteridophytes & Gymnosperms.
Plants, Anatomy	Stem of dicotyledonos plant with abnormal secondary growth fetures.
and Embryology.	Embryological permanent slides

Suggested Readings

- 5. Lee, R.E. (2008). Phycology, Cambridge University Press, Cambridge. 4th edition.
- 6. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition.
- 7. Kumar, H.D. (1999). Introductory Phycology. Affiliated East-West Press, Delhi.
- 8. Sahoo, D. (2000). Farming the ocean: seaweeds cultivation and utilization. Aravali International, NewDelhi.
- 9. The embryology of angiosperms.
- 10.B.P.Pandey (2010) Anatomy of plants

THIRD SEMESTER: MINOR-1 GE-II (Botany)

F.M 75+25=100(04+02 credits)

Duration of Exam: 3

hours

Minor –I Generic Elective-II (Plant and Human Welfare, Plant physiology and Biostatistics)

Unit –I	Systematics and Economic Botany:	Periods :6
	Artificial, natural and phylogenetic system of classification,	
	Economic uses of the following plants in relation to human welfare	
	(in form of short notes) with reference to rice, black gram, mustard,	
	cotton, coffee, Cinchona, Ocimum.	
Unit –II	Plant Physiology	Periods :14
	Photosynthesis: Light & Dark reaction, Mechanism of	
	photophosphorylation; Path of carbon, C ₃ , C ₄ and CAM cycle,	
	Respiration ; glycolysis, TCA cycle ,electron transport system,	
	Mechanism of oxidative phosphorylation ,hexose monophosphate	
	shunt, Nitrogen fixation: symbiotic and non-symbiotic mechanism,	
	, phases of growth, Phytohormones : discovery, physiological role	
	of Auxins, Gibberellins, cytokinins and ABA. Flowering:	
	Photoperiodism and vernalization.	
Unit –III	Environmental Biology	Periods:10
	Environment and its components. Communities and their	
	characteristics. Ecosystems: Concepts, structure and function of	
	ecosystem; energy flow, bio-geo chemical cycles. Renewable and	
	non-renewable energy resources and their management. Pollution of	
	air, water, soil, noise, and their control and prevention. Global	
	warming, Acid rain and Ozone depletion.	
Unit-IV	Biostatistics	Periods :10
	Need of statistics in biology, collection of biological data, central	
	tendency- mean, median, mode and their biological significance,	
	dispersion, mean deviation, variance, standard deviation and their	
	biological imporantance, Estimation and hypothesis testing,	
	student's t -test and Chi-square test and their application	

Internal Assessment: Home Assignment submission

BOTANY

General elective - II

PRACTICAL (20 CLASSES 2 HOURS EACH)

Systematics and	Taxonomy of plants belonging to :- Rubiaceae, Apocynaceae,
Economic Botany:	Asclepiadaceae, Asteraceae solanaceae, Lamiaceae, Brassicaceae And
	Liliaceae
	Economic importance of :- Rice, Black gram, Mustard, Cotton, Coffee,
	Cinchona & Ocimum.
Plant Physiology	Determination of osmotic pressure of vacular cells of epidermid of Rhoeo discolor leaf
	by plasmatic method, Determination of OP of Root / Stem tuber.
Environmental	Central tendency, Standard Deviation & chi square test
Biology &	
Biostatistics	

Suggested Readings

- 1. Systematic botany and Economic Botany by Sing ,Pandey Jain
- 2. Plant physiology by Arun Chandra Sahu
- 3. Perspectives in Ecology & Biostatistics by Mandeep Raj & Rajan Sharma

FOURTH SEMESTER: SEC-II F.M 80+20=100(04 credits)

Subject Specific Skill (SEC-II) : Applied Biotechnology (40 periods)

Unit –I	Genetic Engineering	10 lectures
	Structure and Biological importance of DNA and RNA, DNA	
	replication in prokaryotes, Mechanism of Transcription and	
	process of translation.	
	Restriction endonucleases, ligases, linker, prokaryotic and	
	eukaryotic cloning vectors, Introduction of DNA fragments in to	
	vectors , r-DNA technology , Gel Electrophoresis, Blotting	
	techniques and their applications, Bacterial recombination.	
Unit –II	Plant Biotechnology	10 lectures
	Tissue culture laboratory requirements, techniques, Tissue culture	
	methods, Protoplast fusion, germ plasm conservation, transgenic	
	organisms., Brief idea about application of plant biotechnology	
Unit –III	Environmental Biotechnology	10lectures
	Basic concept and issue of environment, A brief idea of air, water	
	pollution and it's control through biotechnology, Green house	
	effect, Acid rain, Ozone depletion and their impact on the	
	environment.	
Unit-IV	Ethics in Biotechnology	10 lectures
	Ethical problems involved in medical and agricultural bio-	
	technology, IPP, IPR, Patenting rules with examples	

Internal Assessment: Home Assignment submission

SECOND SEMESTER

ABILITY ENHANCEMENT COMPULSORY COURSE (AECC -I)

F. M. 100 (80+20) (04 credits)

ENVIRONMENTAL STUDIES

Unit –I	Basic concepts of Environmental studies: The Environment -	10 lectures
	Air, Water and Land, Environmental factors (Abiotic factors:	
	Light, Temp ,Soil, Water, Air and Biotic factors), Ecological	
	adaptations .Ecological succession (hydrosere and xerosere)	
Unit –II	Ecosystem: Structure and Function, Energy flow, Food chain,	10 lectures
	Food web, Ecological Pyramids, Bio-geo -chemical cycles:	
	Hydrological cycle (water) ,Gaseous cycles (Oxygen and	
	Carbon dioxide) Sedimentary cycle (Nitrogen and Sulphur)	
	Population studies: population density,natality,mortality,carrying	
	capacity and growth curves.	
Unit –III	Environmental pollution : Air pollution, Water pollution ,Soil	10 lectures
	pollution ,Noise pollution, radiation pollution . Depletion of	
	Ozone layer, Green house effects, Pollution indicators(lichen	
	and algal species)	
Unit-IV	Renewable and Non-renewable energy resources. Conservation	10 lectures
	of natural recourses .Forest Conservation and afforestation,	
	Social Forestry, Biodiversity conservation, (in situ and ex situ).	
	Pollution control Board and its functions, Environmental	
	awareness.	

Internal Assessment: written Examination